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EXECUTIVE SUMMARY 

The monitoring of an aircraft’s actual structural usage has the potential to increase rotorcraft 
safety enhancements provided by Health and Usage Monitoring Systems (HUMS) and reduce 
operating costs via usage-based maintenance (UBM) credits. While regime recognition (RR) 
algorithms have been demonstrated, none has been fully validated, and UBM credit approval 
remains elusive due to both technical and certification challenges. The FAA has funded research 
and development (R&D) to establish and demonstrate viable approaches for validating and 
certifying HUMS RR-enabled UBM credits. In contract DTFACT-06-C-00002, Sikorsky 
Aircraft Corporation (SAC) defined an end-to-end UBM process that fulfills the objectives of 
Advisory Circular (AC) 29-2C, section MG-15, and utilizes available HUMS data. This effort, as 
documented in FAA report DOT/FAA/AR-12/4 [1], included the development of an RR-
clustering approach for addressing shortcomings of current RR algorithms, which can be applied 
through post-processing of HUMS data without having to modify existing onboard software. 
Delivery Order (DO) 0001, under contract DTFACT-11-D-00004, further developed and 
validated usage and loads monitoring methods, which were documented previously in FAA 
report DOT/FAA/TC-15-10 [2]. 

DO-0002/0003, under contract DTFACT-11-D-00004, which is documented herein, continued to 
evaluate and demonstrate enabling structural usage monitoring technologies, including regime, 
gross weight (GW) and center of gravity (CG), and loads monitoring. In particular, regime 
clustering was further refined, validated, and applied. Data were also analyzed from a flight test 
of fiber-optic landing gear load sensors that can be used to calculate GW and CG as well as 
measure landing and ground handling loads. The flight test was conducted by the U.S. Army’s 
Communications-Electronics Research, Development and Engineering Center. Finally, an 
investigation of load monitoring requirements was conducted to support future AC guidance on 
the integration of load sensor technologies into HUMS. 

The primary focus of DO-0002/0003, and therefore this report, is on the application of structural 
usage monitoring methods to achieve a “mock UBM credit.” Building upon previous R&D 
efforts, selected usage monitoring methods and a viable end-to-end process for achieving UBM 
credits were applied to calculate a retirement time (RT) credit for a representative life-limited 
component based on individual aircraft RR usage statistics calculated from HUMS operational 
fleet data recorded on S-92® rotorcraft. A comprehensive assessment of the life-limited 
components contained in an S-92 rotorcraft was conducted to identify candidate components for 
use in developing a mock credit. A total of 10 candidate components that had various advantages 
and disadvantages relative to the objectives of the FAA program were identified. The main rotor 
stationary swashplate was selected based on this assessment because it was a moderately 
complex, but tractable, application that could be completed within the allocated budget and 
schedule of the FAA program. The stationary swashplate required accurate recognition of six 
critical regimes in order to achieve a UBM credit. 

The previously developed regime-clustering method was further improved using HUMS 
parametric data and applied in automated fashion to operational HUMS data, resulting in 
individual aircraft usage statistics across the fleet for critical regimes driving the RT for the 
stationary swashplate. Usage statistics for all S-92 aircraft were calculated for one year’s worth 
of data and compared to the composite worst case usage spectrum, by individual tail number, to 
identify the best candidates for UBM life credits. The entire usage history of the selected serial 
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number was analyzed to calculate a usage credit and new RT, using regime-specific reliability 
factors to achieve six-9’s (0.999999) fatigue reliability, as validated within a probabilistic 
framework. 

This report and the mock certification example represent opinions and recommendations from 
SAC and are not FAA policy. 
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1.  INTRODUCTION 

One of the central goals of usage-based maintenance (UBM) is to change the maintenance 
paradigm from one that is currently flight-hour or schedule-based to one that is based on usage 
and loads. For example, life-limited parts (LLPs) are currently retired based on the number of 
flight hours flown regardless of whether the aircraft is only flown benignly (e.g., VIP transport) 
or flown much more aggressively (e.g., cargo transport with many ground-air-ground [GAG] 
cycles per hour). A certified UBM process that accurately monitors usage and loads would 
enable the attainment of retirement time (RT) credits (or debits) for LLPs based on measured 
aircraft configuration, usage, and loads rather than flight hours and underlying conservative 
design assumptions. Virtual sensing methods that utilize measured aircraft state parameters have 
been developed previously by Sikorsky Aircraft Corporation (SAC) to monitor key parameters, 
including: 1) regime recognition (RR) algorithms with associated clustering techniques, 2) 
virtual monitoring of loads (VML), and 3) gross weight (GW) and center of gravity (CG) 
estimation. Under previous FAA research and development (R&D) projects [1, 2], many of these 
usage and loads monitoring technologies were evaluated, validated, and demonstrated with 
respect to the potential UBM credit benefits and challenges remaining to be addressed before 
they could be considered mature enough to serve as the focus of a formal UBM credit 
application. The research documented herein focuses on the application of structural usage 
monitoring methods and algorithms to achieve UBM credits, such as extended RTs, allowing 
parts to remain on wing longer. 

Dynamic component RTs are currently set by a rigorously defined fatigue damage calculation 
process [3] that computes a calculated retirement time (CRT) from three basic inputs: component 
strength with reliability-based safety factors, a composite worst case (CWC) usage spectrum, and 
a load spectrum derived from flight tests. Component strength is generally derived from full-
scale component fatigue testing. The CWC spectrum combines conservative assumptions on 
aircraft usage with high envelope loads. The usage is typically given in the form of a list of flight 
regimes, each of which is assigned either a percentage of total flight time or rate of occurrence 
(maneuvers per 100 flight hours). Flight loads are developed in the flight loads survey (FLS), a 
comprehensive flight test program that exercises the extremes of aircraft performance to develop 
the highest expected loads for each regime. Each component is assigned a substantiating load 
parameter(s), which characterizes the load states for that component’s critical failure mode(s). 
Common substantiating parameters for dynamic components are derived from calibrated bending 
and axial bridges such as a main rotor (MR) shaft bending bridge or push rod axial load bridge. 
They can also be based on more local stress/strain measurements when necessary. The three 
inputs (i.e., strength, usage, and loads) are then combined in a stress-life fatigue calculation 
which results in the CRT. 

The Integrated Vehicle Health Management System (IVHMS) is the next generation system 
derived from the Integrated Mechanical Diagnostics—Health and Usage Monitoring System 
(IMD-HUMS). The IVHMS is standard equipment on the SAC UH-60M aircraft, while the 
IMD-HUMS is standard equipment on the S-92 aircraft. Aside from recording a plethora of 
aircraft state parameters, such as airspeed, engine power measurements, and pilot control inputs, 
both the IVHMS and IMD-HUMS execute similar RR algorithms from these state parameters. 
These algorithms translate aircraft state measurements into regime classifications (e.g., climbing 
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left turn or level flight [LF] at 0.8 VH) that can be used to better understand aircraft usage, which 
drives component RTs. The result is a recorded time sequence of regimes flown for each flight. 

While the current onboard RR algorithms provide significant insight into the usage of 
operational aircraft, some shortcomings have been identified that must be overcome in order to 
develop a practical UBM process that can be certified for securing credits and benefits. One such 
issue is the frequent toggling of RR output data due to the precise second-by-second 
classification using state parameter data. In order to overcome some of the shortcomings of this 
system, additional offboard processing of these data is desired to enable existing onboard 
software capabilities to be exploited without the need to invest in costly onboard software 
changes. One such technique is called regime clustering, which was developed, refined, 
validated, and demonstrated in previous FAA R&D projects [1, 2, 4]. After being trained on a 
given data set, this additional processing gathers regime time sequences into contiguous 
maneuvers or target regimes that more accurately represent the aircraft usage—both in terms of 
pilot intent and CWC design assumptions—when compared with the fine, second-by-second 
granularity regime sequences produced by the IVHMS, IMD-HUMS, and similar systems. The 
regime clustering algorithms work by reprocessing the IVHMS RR sequence outputs into 
broader target regimes, which are based on statistical and physics/experience-based rules.  

The state parameters collected by the IVHMS and IMD-HUMS can also be processed offboard 
to estimate additional aircraft configuration parameters such as the GW and CG locations [2]. 
The algorithms involved can be grouped into two classes: physics-based and mathematical 
models. Both classes of algorithms only operate upon a small subset of aircraft regimes, which 
are chosen to enhance algorithm accuracy. This typically is limited to hover and steady LF. In 
another offboard processing application of aircraft state parameter data, individual loads can be 
estimated in continuous time through VML algorithms [5, 6]. After being trained, these 
mathematical models recreate the readings of individual strain gages, bending bridges, or other 
load measurements that were included in the aircraft FLS as a substantiating parameter. If a 
given load is also a component substantiating parameter, it is possible to gain a better 
understanding of the remaining fatigue capacity of a component subjected to field usage. The use 
of physical sensors integrated into production aircraft are also being considered for monitoring of 
key loads and substantiating parameters [7].  

Under previous FAA R&D projects [1, 2], many of these usage and loads monitoring 
technologies were evaluated, validated, and demonstrated with respect to the potential UBM 
credit benefits and challenges remaining to be addressed before they can be considered mature 
enough to serve as the focus of a formal UBM credit application. The current effort documented 
herein, under Delivery Order (DO) 0002/0003 (within contract DTFACT-11-D-00004), 
continued to evaluate and demonstrate certain enabling structural usage monitoring technologies, 
including regime, GW and CG, and loads monitoring. In particular, regime clustering was further 
refined, validated, and applied. Data were also analyzed from a flight test, conducted by the U.S. 
Army’s Communications-Electronics Research, Development and Engineering Center 
(CERDEC), of fiber-optic landing gear load sensors that can be used to calculate GW and CG 
and measure landing and ground handling loads. Finally, an investigation of load monitoring 
requirements was conducted to support future AC guidance on the integration of load sensor 
technologies into HUMS. These efforts are documented in section 2. 
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The primary focus of DO-0002/0003 and, therefore, this report is on the application of structural 
usage monitoring methods to achieve a “mock UBM credit.” Previous R&D efforts, selected 
usage monitoring methods, and a viable end-to-end process for achieving UBM credits were 
utilized to calculate an RT credit for a representative life-limited component based on individual 
aircraft RR usage statistics calculated from HUMS operational fleet data recorded on S-92 
rotorcraft. A comprehensive assessment of the life-limited components contained in an S-92 
rotorcraft was conducted to identify candidate components for use in developing a mock credit. 
A total of 10 candidate components were identified that had various advantages and 
disadvantages relative to the objectives of the FAA program. The MR stationary swashplate was 
selected based on this assessment because it was a moderately complex, but tractable, application 
that could be completed within the allocated budget and schedule of the FAA program. The 
stationary swashplate required accurate recognition of six critical regimes in order to achieve a 
UBM credit. 

The previously developed regime clustering method was applied in automated fashion to 
operational HUMS data—resulting in individual aircraft usage statistics across the fleet for 
critical regimes driving the RT for the stationary swashplate. Usage statistics for all S-92 aircraft 
were calculated for one year’s worth of data and compared to the CWC usage spectrum by 
individual tail number to identify the best candidates for UBM life credits. The entire usage 
history of the selected serial number was analyzed in order to calculate a usage credit and new 
RT using regime-specific reliability factors to achieve six-9’s (0.999999) fatigue reliability, as 
validated within a probabilistic framework. The mock certification is documented in section 3. 
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2.  UBM TECHNOLOGY SUMMARY   

2.1  REGIME RECOGNITION  

HUMS RR algorithms are used to identify and categorize how the aircraft has been flown. They 
comprise a key element to short-term UBM approaches being pursued by various original 
equipment manufacturers (OEMs) to obtain approved UBM credits. Inputs required for RR are 
acquired by the HUMS system from various avionics systems across the S-92 aircraft via the 
digital bus. Many of these inputs are also essential for flight control and pilot decisions, and thus 
have the highest levels of hardware and software integrity. On older analog aircraft, HUMS may 
have dedicated sensors or acquired through physical connections to tie into the analog data 
stream. Consequently, this presents a number of challenges when it comes to the qualification 
and certification of a HUMS-based UBM credit for such a system. These challenges are beyond 
the scope of this report. 
 
The RR data flow for the S-92 aircraft is illustrated in figure 1, wherein the standard input and 
output data types are shown. RR input data can be grouped into the following four categories. 
 
1. Basic aircraft and system data  
2. Air data parameters  
3. Aircraft rates and attitudes 
4. Aircraft “rigid-body” accelerations  

While the details of RR algorithms vary, the above types of required input data are typical for 
most OEM rotorcraft platforms. The HUMS system output includes the regime sequence, start 
time and duration for each recognized regime, and all raw parametric data and derived 
parameters that were used in detecting the regimes. 

As is typical for many HUMS, the RR algorithms deployed on the S-92 aircraft are based on 
hierarchal Boolean logic, which compares input parameters against a set of predefined ranges to 
determine the general aircraft flight condition/maneuver, such as steady level, turn, climb, or 
pullout. An example of a regime definition for a right turn during climb is shown in table 1. 
Some parameters, such as weight-on-wheels (WOW), landing flag, and takeoff flag, are 
considered in all regime definitions to ensure the aircraft is in a flight condition. The hysteresis 
parameters define the soft boundaries between regimes that are designed to reduce rapid toggling 
when the aircraft state jumps in and out of a regime. The hysteresis parameters come into play 
when exiting the regime by requiring that the specified parameter exceeds the defined threshold 
by the hysteresis amount. Finer regime classification is possible with knowledge of aircraft 
configuration such as GW, CG, external load, and external stores. This enables the prorating of 
regimes within usage categories to better understand the nature of the loads during a specific 
regime. Regime prorating is frequently used in fatigue substantiation for military rotorcraft and, 
to a lesser extent, commercial rotorcraft, which typically use only maneuver severity to form 
prorated regimes. 
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Figure 1. Regime recognition algorithm data processing 

 

Table 1. Example regime definition for climb right turn 

Description: Right turn during climb 
Name: Climb right turn 

Parameter Operator Threshold Hysteresis 
WOW = False None 
Landing flag  = False None 
Takeoff flag  = False None 
Calibrated airspeed  > 40 5 
Corrected NZ  <= 1.3 None 
Corrected NZ  >= 0.7 None 
Rate of climb > 400 200 
Roll attitude  > 10 3 

       NZ = vertical acceleration 

  

Basic Aircraft Parameters  
Weight-on-wheels 
Main rotor speed 
Engine torque 
Radar altitude 
 
 

Air Data Parameter 
Calibrated airspeed 
Barometric rate of climb 

 
Aircraft Attitudes and Rates 

Pitch attitude 
Roll attitude 
Yaw rate 

 
Acceleration 

Vertical acceleration 

 

Inputs 

Regime Sequence Time History 
 Detected regime sequence 
 Regime start times 
 Regime durations 

 

Outputs 

HUMS 

Regime 
Definitions 
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2.1.1  Regime Recognition Clustering 

A fundamental requirement that must be satisfied before component RTs can be influenced by 
RR data is to demonstrate, with direct evidence from the flight test, that the algorithms correctly 
classify the flight regimes relevant to a particular credit application. Several previous efforts 
have focused on RR validation [1, 2]. Through these efforts, it has been shown that onboard RR 
classifications for many critical maneuvers do not correlate directly to independent pilot-declared 
maneuvers, which traditionally serve as the “truth” regime that RR is intended to capture. Two 
common issues that lead to these errors are: 1) RR makes independent second-by-second 
classifications based on current state parametric data without regard to the previous state (with 
the exception of the use of hysteresis for some parameters), whereas flight test regimes are 
defined holistically by the whole maneuver, and 2) generic HUMS regimes are defined with a 
different classification system than the flight test and usage spectrum regimes, which often do 
not map directly to the aircraft usage spectrum. For example, consider table 2, which shows a 
real example from an S-92 aircraft flight test of the RR output sequence during a 45° right turn. 
During this flight test maneuver, RR detected five distinct turn regimes. The maneuver starts 
with a few seconds of climb. Then, RR initially detects a generic right turn but does not capture 
the maximum angle of bank [AOB] until a few seconds later. As the aircraft descends, the 
regime changes from a level turn to a diving turn, before returning again to a level turn and then 
exiting the maneuver to an LF condition. The number of predicted turn regimes is due to 
independent second-by-second classifications and the fact that 45° turns normally have a large 
variation in altitude rate—which triggers the “toggling” from level to diving turn. For this 
reason, neither the flight test maneuver classification system nor the S-92 aircraft usage spectrum 
explicitly defines level and diving turns. Rather, turns are defined more broadly in the usage 
spectrum, such that it contains both level and diving turns. This is an example of how generic 
HUMS regimes may not map directly into the usage spectrum on a one-for-one basis for any 
particular aircraft model. 

Table 2. Regime recognition output during 45° right turn 

Pilot Declared Truth Regime Regime Recognition Prediction 

45° right turn 

Steady climb 
Generic level right turn 
Generic level right turn, 45°, 0.8 VNE 
Right turn in dive 
Right turn in dive, 45° 
Level right turn, 45°, 0.8 VNE 
Forward flight 0.8 VNE 

While these issues are often perceived as errors in the output of RR, the output during these 
maneuvers is not random. RR is properly classifying the regimes based on the definitions that 
were used to design the software and the dynamic nature of certain key state parameters such as 
roll attitude, rate of climb, and load factor during transient maneuvers. While it is possible to 
define these regimes to be more consistent with flight test definitions, a simpler post-processing 
approach called clustering was developed under the FAA Structural Usage Monitoring 
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Technology program [1] to take advantage of hundreds of thousands of hours of existing RR data 
from the S-92 aircraft fleet. Clustering works by identifying the patterns in RR output that occur 
during targeted regimes and defining the logic for broadening or clustering the RR output into 
larger groups that correctly capture both the occurrence and duration of the intended regime. The 
objective of clustering is to find occurrences and duration of a particular usage spectrum regime 
within existing HUMS RR output data.  

Cluster definitions consist of a set of target regimes and a set of cluster regimes. Due to the 
difference in regimes between HUMS and the S-92 aircraft usage spectrum, several different 
HUMS regimes can be associated with a usage spectrum regime. These regimes that map 
directly to the desired usage spectrum regime are called target regimes. However, examination of 
actual RR output shows that many other cluster regimes are in close proximity to or cluster 
within and around the usage spectrum regime. In processing the clustering algorithm, any 
contiguous set of target regimes are combined together into one regime, and any adjacent cluster 
regimes are added only after the target regimes are initially detected. Cluster regimes can be 
defined with persistence parameters such that only very short duration cluster regimes are 
included, but sufficiently long duration cluster regimes are treated as separate regimes. The 
process of designing a regime cluster involves a combination of determining the desired target 
regime set (e.g., “generic level right turn, 45° AOB, 0.8 velocity, not to exceed [VNE]”) that 
aligns with the intended usage spectrum regime (e.g., “right turn, 45° 0.8 VNE”), along with the 
observation of RR test data to determine the cluster regime set (e.g., “generic level right turn”) 
that occurs within the usage spectrum regime. 

Figure 2 shows the regime sequence from table 2 in a time series plot, along with the result of the 
regime clustering algorithm, and key parametric input data plotted for roll angle, altitude rate, 
and load factor. In this example, the clustering algorithm initially looks for the target regime, 
defined here as “generic level right turn, 45° AOB, 0.8 VNE” and highlighted in green. Based on 
the physics of the maneuver and the predictable behavior of the regime algorithm, there are 
several other regimes that will be classified along with the target regime, such as “right turn in 
dive.” These regimes are classified as cluster regimes and are highlighted in yellow. Once the 
target regimes are identified, the clustering regimes are then used to consolidate the regime 
sequence into a single regime cluster identified as “right turn, 45°, 0.8 VNE.” The result is a 
single clustered regime that can be reliably counted on to provide both the proper number of 
occurrences and duration of the intended usage spectrum regime. 
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Figure 2. Example of regime clustering 

2.1.2  Parametric Prorating 

The clustering approach described above was initially developed under the effort of Bates, et al. 
[1] and refined under this project in support of the mock regime-based UBM credit application, 
as detailed in section 3. During the course of applying the clustering algorithm to the S-92 flight 
test data, there were cases found where clustering alone could not correctly map the HUMS 
regime sequence to the intended usage spectrum regime. This result is primarily caused by the 
multitude of target regime classifications in the same flight test maneuver, often obscuring what 
the true maneuver prorate value was (such as AOB or airspeed). The solution to this problem is 
to leverage parametric data (such as roll angle or airspeed) in the clustering process as a way to 
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ensure that each occurrence of a maneuver is prorated correctly, with consideration given to the 
variation of the relevant parameter across the entire duration of the maneuver. The basic strategy 
is to use RR clustering to capture broad maneuver categories such as turn or pullout, and then use 
the parametric data across the entire broadened regime to prorate the broad regime to a specific 
usage spectrum regime. This process is illustrated in figure 3. 

 

Figure 3. Regime clustering with parametric prorating 

Using this approach, broad regime clusters were developed for turn, pushover, and pullout, as 
these broad regimes covered all of the critical damaging regimes that are relevant to the mock 
certification task detailed in section 3. As part of the mock UBM credit application effort, 
validation of the clustering/prorating approach to RR was carried out against flight test data. The 
results of the validation exercise are contained in section 3.5.3.1. 

2.2  LOADS MONITORING 

The ability to measure key loads on operational rotorcraft could radically change the way these 
products are designed, qualified, and managed throughout their life cycle. The lack of such 
measurements is indicative of the perceived difficulties, increased weight, and reliability issues 
associated with deploying the many physical sensors that would be required to monitor all such 
local loads, especially in rotor systems. This section presents the research for two load 
monitoring technology areas that can have significant impact to the way rotorcraft are 
maintained. First, flight test results for a Landing Gear Load Measurement System (LGLMS) 
used for estimating rotorcraft GW and CG are presented. Second, design considerations for a 
direct loads monitoring approach to fatigue management is studied by simulating the effect of 
digital signal processing on fatigue life estimation. 
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2.2.1  GW/CG Monitoring 

2.2.1.1  Background 

The ability to monitor vehicle GW and CG in service can enable more advanced UBM methods, 
provide safety enhancements, and potentially support the flight control system. While all 
rotorcraft are qualified to a maximum GW, they can spend much of their service life at GWs well 
below maximum. Estimating GW and CG usage across a fleet is important in the initial design 
and analysis of a rotorcraft structure, but conservative assumptions are usually relied on for 
design purposes. GW/CG monitoring can enable HUMS UBM approaches for tailoring 
maintenance requirements for specific rotorcraft that consistently operate below design 
assumptions. Knowledge of GW/CG in real time on the ground can also enhance safety by 
ensuring the vehicle is within safe limits prior to takeoff. Current pre-flight estimates of GW and 
CG are based on accurate measurements of an empty baseline aircraft, good estimates of fuel 
weight, and less accurate estimates of passenger and payload weight as well as location. 
Attempted takeoffs with unsafe aircraft weight and balance have historically been a key 
contributor to a number of aircraft accidents. 

A system that measures landing gear loads would provide many benefits in addition to GW and 
CG monitoring. Landing loads can be monitored to automatically trigger inspections upon hard 
landings and direct the inspections to specific landing gear or portion of the aircraft. Strut health 
assessments can be made by monitoring load versus displacement and detect when servicing is 
required. WOW measurements can be used in flight controls to detect when an aircraft is in very 
light ground contact. While there are numerous benefits to a landing gear LGLMS, the 
technology has not sufficiently matured to the point where these sensors are being designed into 
the rotorcraft. Landing gear struts displace under landing loads and variations in GW. This 
displacement results in longitudinal and vertical translation, which affects the wheel position 
relative to the CG. To precisely monitor GW and CG in a sensor system, measurements of the 
weight on each wheel and the position of each strut must be taken.  

To assess the viability of a landing gear LGLMS, the FAA contracted with Epsilon Optics to 
design a prototype fiber-optic-based LGLMS for the UH-60. The CERDEC flight test 
organization conducted the flight test of the LGLMS. SAC provided design support to Epsilon 
and test and analysis support to CERDEC. Prior to flight testing, SAC also assisted in the 
instrumentation and calibration of the landing gears fitted with prototype optical load sensors. 
Epsilon Optics specializes in fiber-optics measurement systems and has applications in the 
aerospace, civil engineering, marine, and energy sectors. Epsilon specifically has experience in 
prototyping an LGLMS for the SAC S-92 aircraft.  

The initial effort between SAC and Epsilon involved providing UH-60 design data and stress 
analysis to allow Epsilon to configure a viable prototype sensor system for the UH-60 landing 
gears, including the two main gears and the tail gears. In August 2014, Epsilon built a prototype 
sensor system that was installed in the UH-60 landing gear at SAC and subsequently bench 
tested the system in order to assess sensitivity and calibrate the LGLMS. The UH-60 landing 
gears were then transported directly to the CERDEC test facility in Lakehurst, New Jersey for 
installation on a U.S. Army UH-60M test aircraft. CERDEC conducted an aircraft ground 
calibration procedure followed by a series of scripted flight tests from November–December 
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2014. In order to have an independent assessment of the performance of the LGLMS, SAC 
installed additional strain gage load sensors on the aircraft struts. These sensors were calibrated 
on the aircraft to calculate individual wheel load to estimate the GW and CG independently from 
the optical LGLMS system. The remainder of Section 2 provides details on the Epsilon optical 
LGLMS and reference sensor systems and provides results from the bench test, aircraft 
calibration, and flight test phases. 

2.2.1.1.1  Optical Landing Gear Sensors 

The Epsilon optical LGLMS design consisted of a series of Fiber Bragg grating (FBG) sensors 
installed in a phenolic cylindrical sensor body custom designed to slide into and clamp against 
the internal diameter of the UH-60 landing gear structure. The sensor body was constrained on 
both ends by radial clamps that translate structural bending or axial strain to the cylinder. The 
design of the cylinder was such that the strain of the cylinder was amplified in the central 
measurement region, allowing Epsilon to improve output from the FBGs. A main landing gear 
(MLG) outfitted with the optical LGLMS sensors is shown in figure 4, with the tail landing gear 
(TLG) sensor shown in figure 5. Both sensors are shown partially installed in the landing gear. 
Figure 6 shows a close-up of the screws that are used to tighten the clamping mechanism to the 
structure once the sensor is installed. 

 

Figure 4. Optical LGLMS UH-60 MLG sensor 
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Figure 5. Optical LGLMS UH-60 TLG sensor 

 

Figure 6. MLG sensor clamp screws 
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2.2.1.1.2  Reference Sensors 

The reference sensors utilize a traditional landing gear load measurement approach of using foil 
strain gages in a full bridge configuration. Figure 7 shows a diagram of the reference strain gages 
on the airframe attachment lugs of the MLG shock strut. The TLG shock strut reference 
measurements were made in a similar location as the MLG shock strut, although sensors were 
placed on both the upper and lower ends of the TLG shock strut. The shock strut measurement 
location shown in figure 7 has been used on all UH-60 structural flight load survey tests that 
have included landing gear load assessments. The measurement captures the axial load 
component in the strut, which can then be related to the normal load applied to the wheel through 
knowledge of the strut position or assuming a nominal strut position. 

 

Figure 7. MLG shock strut reference sensor location 

2.2.1.2  Bench Calibration 

2.2.1.2.1  Optical Landing Gear Sensors  

The optical LGLMS sensors were tested in two UH-60 landing gear test rigs. Figure 8 depicts the 
MLG, while figure 9 depicts the TLG. Bench calibration consisted of applying precise loads in 
uniaxial directions of the sensor. For the MLG, calibration loads were applied in the positive 
drag axis and positive and negative vertical axes, as shown in figure 10. For the TLG, calibration 
loads were applied in the positive vertical direction and positive and negative lateral direction, as 
shown in figure 11. While it is normally desirable to apply calibration loads to all axes and 
directions, some directions were not tested due to limitations of the calibration rigs and a 
condensed schedule allotted to offsite instrumentation and calibration in order to minimize down 
time for CERDEC aircraft.  
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Figure 8. MLG calibration fixture 

 

Figure 9. TLG calibration fixture 
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Figure 10. MLG axle calibration loads 

 

 

Figure 11. TLG calibration loads 

The performance of the MLG sensors is shown in figures 12 and 13, in terms of vertical 
sensitivity and drag sensitivity, respectively. Two very notable and undesirable features of the 
sensitivity plots are clearly visible in these figures: 1) the response is nonlinear to load input, and 
2) the responses between the right and left side FBG are dissimilar. During the calibration 
testing, it was also observed on several occasions that the MLG sensor output had a bias shift 
during the load sequence. These issues and others are discussed in more detail below. 
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1. The nonlinear response is believed to be due to insufficient clearance in the MLG sensor 
body relative to the inside diameter (ID) of the axle. The sensor body mechanism is 
designed to be attached to the ID of the cylindrical structure of the MLG axle or TLG 
yoke through the clamp pads that are located on each end of the sensor body. Between 
the clamp pads, the sensor body is designed to float within the cylindrical structure, with 
clearance between the ID of the structure and the outside diameter (OD) of the sensor 
body. As bending occurs in the axle structure, the clearance is reduced between the 
structure ID and sensor body OD. If there is insufficient clearance in the design of the 
sensor, then the sensor body will contact the structure that will begin to change the strain 
response of the sensor body and FBGs mounted in the sensor body. This theory has not 
been confirmed by testing, although the TLG sensor did not observe this non-linear 
response. It was also believed by Epsilon to have been designed with more than sufficient 
clearance. Epsilon believed that the MLG sensor was more at risk of contact than the 
TLG sensor. 

 
2. Dissimilar response between the left and right were observed in the bench testing. The 

cause of this is unknown. During aircraft calibration, both the left and right sensors 
displayed similar output. The left sensor displayed consistent output between the bench 
test and aircraft test, whereas the right sensor did not. 

 
3. The presented bench test calibration plots in figures 8 and 9 were the final test sequences 

conducted after several trial runs during which adjustments were made to the clamping 
mechanism in order to tighten the grip of the phenolic cylinder to the internal surface of 
the axle. These adjustments were made because of observed step changes of the sensor 
output during or immediately after the application of load. The step changes were always 
in the direction toward the initial resting strain. Following the step change in output, the 
load was removed, and the resting output was observed to have shifted significantly. The 
root cause hypothesis is that the sensor grips had slipped, thus allowing the sensor to 
return to a relaxed state and instantaneously reducing the strain output from the FBGs. 
An increase in the clamping force followed by retesting resulted in increased load-
carrying capability before the point of slippage. After several iterations of increasing the 
clamping force, the test was completed to full calibration load without slippage and the 
sensor output returned to its pre-test value. 

 
4. The FBG system was designed with a fifth unloaded strain sensor channel that would be 

used for temperature compensation. It was found that the temperature compensation 
channel was significantly straining with load, rendering this channel unreliable for use 
with temperature compensation. 

 

16  



 

 

Figure 12. Optical LGLMS vertical sensitivity (right and left MLG) 

 

Figure 13. Optical LGLMS drag sensitivity (right and left MLG) 
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Performance of the TLG sensor during the bench calibration (shown in figure 14 for vertical 
sensitivity and figure 15 for lateral sensitivity) was excellent in that it displayed linearity in both 
the vertical and lateral direction. The lateral sensor output was approximately 6% of the vertical 
strain during vertical load cases, and the vertical sensor output was 6% of the lateral strain during 
lateral load cases. This symmetry in the cross talk between vertical and lateral directions likely 
indicates an imperfect sensor alignment relative to the loading axes. The only observed problem 
with the TLG sensor is that the fifth temperature compensating channel was significantly 
strained with applied load, rendering this channel unreliable for use in temperature 
compensation. 

The calibration testing provided an opportunity for early risk reduction of the prototype sensors 
prior to flight testing. The issues that were observed in the MLG sensors would normally be 
sufficient to warrant a redesign prior to flight testing; however, it was agreed among SAC, 
Epsilon, CERDEC, and the FAA that the reference foil-gage strut sensors, combined with a 
functional Epsilon tail FBG sensor, provide enough data to conduct a meaningful flight test to 
provide insight into sensitivity of GW and CG calculations to various ground conditions (e.g., 
ground idle, flat pitch) and into dynamic landing loads. The MLG sensors were still installed in 
the CERDEC aircraft, and aircraft calibration test results for the MLG sensors are provided as 
well as those for the TLG.  

 

Figure 14. Optical LGLMS vertical sensitivity (TLG) 
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Figure 15. Optical LGLMS Drag sensitivity (TLG) 

2.2.1.2.2  Reference Sensors 

The reference strut sensors were calibrated in a uniaxial load fixture according to SAC standard 
work practice specific to aircraft struts. The calibration fixture is shown in figure 16. As part of 
the calibration standard work, results for commonly calibrated components are compared with 
results from previous calibrations. The main and tail struts passed this comparison test. Results 
from the calibration are shown in figure 17 for the left and right main strut sensors and in figure 
18 for the tail strut sensors. The MR strut sensors displayed excellent results in linearity, 
repeatability, and similarity between left and right. The two tail rotor strut load measurements 
displayed non-linear behavior, but they are consistent with results from previous calibrated 
landing gear sensors. 
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Figure 16. Calibration fixture for strut sensors 

 

 

Figure 17. Right and left main strut calibration sensitivity plot 
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Figure 18. Tail strut upper and lower calibration sensitivity plot 

2.2.1.3  Aircraft Calibration 

Aircraft calibration of the three landing gears and struts was performed using both platform 
scales and lifting jacks, as shown in figure 19 and as described in the following procedures: 

1. With aircraft weight fully on the scales and at complete rest, a manual record of the 
displayed weight on each scale was made along with the measured angle of each drag 
beam relative to the horizontal plane using a digital inclinometer. 

2. The aircraft was then jacked up completely off the scales. 
3. Once the aircraft was sufficiently at rest, a 5-second data capture was made on the 

CERDEC data acquisition system to record all sensor outputs from both the optical 
LGLMS and reference sensors. 

4. Each MLG was then jacked down by 1,000 lbs by reading the weight reduction directly 
from the jack load cells.  

5. The TLG was simultaneously jacked down according to a foreman’s verbal direction to 
achieve the required level tolerance as indicated by a plumb bob in the cabin door frame. 

6. Simultaneous to, or immediately preceding, step 5, a 5-second data capture was made on 
the CERDEC data acquisition system to record all sensor outputs from the optical 
LGLMS and reference sensors. 

7. Once the aircraft was sufficiently at rest, a manual record of the displayed weight on each 
scale was made along with the measured angle of each drag beam relative to the 
horizontal plane. 

8. Steps 3–7 were repeated until the aircraft was fully on the scales, capturing a data point in 
the WOW position. 

9. Reverse procedure was followed until the aircraft was fully off the scales, capturing the 
last data point in the weight-off-wheels position. 

10. The aircraft was lowered back to the scales and a final reading taken on the CERDEC 
data acquisition system. 
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Figure 19. Aircraft calibration setup diagram 

The calibration data were analyzed by comparing the measured wheel load versus sensor output 
for all three optical LGLMS sensors and reference strut sensors. For the optical LGLMS sensors, 
a comparison of the wheel load to sensor output was only made for the vertical load axis, as this 
is the primary axis through which the wheel load is applied. 

2.2.1.3.1  Optical Landing Gear Sensors 

The optical LGLMS MLG output versus applied wheel load is shown in figure 20. A significant 
bias shift was observed in both left and right MLG sensors between the initial WOW condition 
and the final WOW condition, which is similar to that observed during the original bench 
calibration. This behavior is somewhat expected based on the fact that the bench calibration test 
exhibited this same behavior after several iterations of increasing clamping force. Further, the 
clamping force was only adjusted to accommodate the calibration loads, which were less than 
half of the total expected WOW load (based on limitations of the calibration rig). In addition, a 
hysteresis band of approximately 0.2 nm, or roughly 25% of the full-scale range of 0.8 nm, was 
observed after the initial bias shift. Based on these results, the MLG sensors were not considered 
to be a reliable source of landing gear load information during the flight test. 
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Figure 20. Optical LGLMS MLG A/C calibration sensitivity 

The aircraft calibration results for the optical LGLMS TLG sensor are shown in figure 21. The 
TLG exhibited non-linear behavior not observed in the bench calibration. This is due to the 
angular displacement of the landing gear during the application of load. The bench calibration 
was performed with uniaxial loading in the vertical direction, defined as perpendicular to the tail 
yoke. Because the landing gear angle changes with strut position and load, the angle of the 
applied load changes as well. To correct for this during the calibration, precise angular 
measurements were made on the yoke that allow the wheel load to be translated to vertical load 
in the yoke axis. This translation also allows a direct comparison between the aircraft and bench 
calibration results, which are shown in figure 22. The corrected load calibration curves are well-
behaved. It becomes apparent from these results that knowledge of the strut position can enhance 
the accuracy of the landing gear sensors, although a performance penalty in terms of accuracy 
may be acceptable in order to avoid the cost of adding new sensors. Because strut positions were 
not measured during the flight test phase, the error induced by strut displacement is a main 
component of the total observed sensor error. 
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Figure 21. Optical LGLMS TLG A/C calibration sensitivity 

 

 

Figure 22. Optical LGLMS TLG A/C calibration sensitivity—corrected to yoke axis 
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2.2.1.3.2  Reference Sensors 

The MLG strut sensitivity results are shown in figure 23, with the TLG results shown in figure 
24. During the aircraft calibration, the MLG strut sensors performed similar to how they 
performed in the bench calibration. Excessive non-linearity in the TLG sensors was observed, 
which is likely due to a combination of the non-linear effect of strut displacement of the tail and 
non-linear features observed in the uniaxial bench calibration.  

 

Figure 23. MLG strut sensor A/C calibration sensitivity 

2.2.1.3.3  GW/CG Measurement System 

The results from the optical LGLMS and reference sensor evaluations indicate that for the 
purposes of the subject R&D effort, the best combination of sensors to estimate GW and CG is 
the optical LGLMS TLG sensor combined with the reference MLG strut sensors. For the 
subsequent analysis of flight test data, GW and CG estimates were performed using this 
combination of sensors. 
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Figure 24. TLG strut sensor A/C calibration sensitivity 

2.2.1.4  Flight Test Data 

2.2.1.4.1  IVHMS GW Estimation 

To evaluate the performance of the GW/CG sensor system during the flight tests, an independent 
truth GW and CG were required for comparison against the sensor data at various points 
throughout the flight test program. To accomplish this, the existing IVHMS onboard GW 
calculator was used, which operates by establishing a starting GW using pilot input and updating 
GW over time using the fuel tank levels indicated by fuel level gages. The aircraft was precisely 
weighed on platform scales before and after each flight in order to assess the accuracy of the 
IVHMS GW estimator. The pre- and post-flight GW and CG values are listed in table 3. Using 
these data, a quick assessment of the IVHMS GW estimator performance, which is shown in 
figure 25, was conducted. The IVHMS GW estimator was demonstrated to be excellent at 
calculating changes in GW, provided the starting GW input by the pilot was accurate. Average 
error was approximately 100 lbs. for both the pre- and post-flight estimates, which means the 
estimator is sufficiently trending the GW change over time using fuel consumption as measured 
by the fuel level gages. 
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Table 3. Pre- and post-flight GW and CG values 

Pre-Flight Values 

Flight 
Number Date 

A/C 
Calculated 

GW 
LMG 
Scale 

RMG 
Scale 

TLG 
Scale 

Scale 
GW 

Calculated 
CG 

1 11/19/2014 18,003 7,590 7,082 3,342 18,014 362.4 
2 11/25/2014 17,189 7,176 6,858 3,134 17,168 361.3 
3 12/03/2014 16,355 6,720 6,572 3,064 16,356 363.0 
4 12/10/2014 22,080 9,177 9,306 3,578 22,061 354.3 
5 12/19/2014 20,509 8,748 8,746 3,300 20,794 353.1 
6 12/19/2014 19,358 7,870 8,042 3,242 19,154 356.7 

Post-Flight Values 

Flight 
Number Date 

A/C 
Calculated 

GW 
LMG 
Scale 

RMG 
Scale 

TLG 
Scale 

Scale 
GW 

Calculated 
CG 

1 11/19/2014 16,971 7,072 6,880 2,980 16,932 359.1 
2 11/25/2014 16,390 6,840 6,620 2,878 16,338 359.1 
3 12/3/2014 15,368 6,265 6,358 2,702 15,325 359.2 
4 12/10/2014 20,499 8,420 8,425 3,440 20,285 356.8 
5 12/19/2014 19,358 7,870 8,042 3,242 19,154 356.7 
6 12/19/2014 17,485 7,288 7,290 3,008 17,586 357.4 
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Figure 25. IVHMS GW estimator performance 

2.2.1.4.2  GW Measurement 

Using the landing gear measurement system, which is composed of the optical LGLMS TLG 
sensor and the reference MLG sensors, a derived GW parameter was created that can be plotted 
across time. The derived GW parameter for Flight #1 is shown in figure 26. The plot is organized 
using color codes to indicate various phases of the flight. The light blue portion represents the 
rotor off condition before the flight. The light green region shows the ground idle condition when 
the rotor is operating at roughly 50% rotor speed. The red region is indicates the rotor is 
operating at 100% rotor speed in a flat pitch condition. The darker blue region indicates when the 
aircraft is in a taxi condition, which is detected by the WOW sensor and Global Positioning 
System ground speed data. The grey section indicates when the aircraft is off the ground, defined 
only by the WOW sensor. The white section indicates when the aircraft does not fall directly into 
one of the above defined categories.  
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Figure 26. GW derived parameter plot for Flight #1 



Several observations can be made from this plot regarding the ability of the GW sensor system to 
accurately measure the GW of the helicopter. First, the GW measurement is very accurate during 
the initial rotor off condition. The sensor-based GW measurement is shown by the dark blue 
curve while the IVHMS GW estimate, which is used as the “truth” or reference GW, is shown by 
the green curve. As the rotor spins up to ground idle, the sensor-based GW measurement 
decreases, as if the rotor disk were imparting some amount of lift to the airframe. As the rotor 
turns up to 100% rotor speed, the GW measurement increases, as if the rotor disk were imparting 
downward thrust to the vehicle. After review of this behavior with the flight test pilot, it was 
found that this is the expected behavior of the GW measurement given the normal aircraft start-
up sequence. As the rotor spins up to the ground idle condition, the collective blade pitch is 
raised in order to allow the rotor to fly easier to lift the rotor blades up off the droop stops. As the 
rotor transitions from ground idle to 100% rotor speed, the collective pitch is simultaneously 
dropped in order to keep the blades flying in a flat pitch condition, as the centrifugal force at 
100% NR is sufficient to keep the blades off the droop stops. After the rotor has been in the flat 
pitch condition for approximately 3 minutes, the GW estimate suddenly drops by nearly 50%. 
This is due to the pilot initiating an engine health test, during which the collective is raised to 
partially load up the engines, which creates a light-on-wheels scenario. These observations are 
better explained by viewing the GW measurement along with the collective position during the 
ground conditions, as shown in figure 27. Here, it is observed, as expected, that the measured 
GW by the landing gear sensors is significantly affected by both the rotor condition (idle versus 
100%) and collective position. Achieving an accurate GW measurement from a landing gear 
sensor while the rotor is turned on will involve monitoring these parameters for appropriately 
defined measurement capture windows. 

Figure 27. Flight #1 GW sensor output during ground ops 
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Using the data from the rotor off, ground idle, and flat pitch ground conditions, a correlation plot 
was created based on the pre-flight and post-flight values from the flight test. The results, shown 
in figure 28, indicate that the observations from Flight #1 were consistent across all flights. The 
rotor-off condition was the best condition for accurate measurement of GW, while the ground-
idle condition consistently resulted in a lower GW measurement and the flat-pitch condition 
consistently resulted in a higher GW measurement for the reasons summarized above. Error 
statistics for each of these three conditions are shown in table 4. The rotor-off condition 
produced a mean error of -67 lbs and a 1-sigma error of 476 lbs—or approximately 2% of the 
maximum tested GW of 22,000 lbs. On average, the ground idle condition measurements 
underestimated by 800 lbs. and the flat pitch condition measurements overestimated by 770 lbs. 
A holistic GW measurement approach for production use should develop appropriate capture 
windows and correction factors based on measurements of other aircraft state parameters (e.g., 
revolutions per minute [RPM], collective) to provide maximum opportunity for measurements 
and address known uncertainties during various pilot start-up procedures. 

Figure 28. GW measurement performance 
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Table 4. GW measurement performance metrics 

Rotor 
Off 

Ground 
Idle 

Flat 
Pitch 

Mean Error (lbs) -67 -802 772 
1-sigma |Error| (lbs) 476 331 634 
Max |Error| (lbs) 691 1,377 1,429 

2.2.1.4.3  CG Measurement 

The aircraft longitudinal CG was calculated from the landing gear sensor data by assuming 
nominal wheel positions in the aircraft longitudinal axis, although in reality the position of the 
wheel on the ground can vary by as much as four inches due to variations in vehicle GW and 
strut condition. Figure 29 shows the results from the CG measurements made using the landing 
gear sensors during the rotor-off conditions. The rotor-off condition immediately before each 
flight was used to measure CG from the sensors because those are the only conditions in which 
the actual CG is accurately known. Ground-idle and flat-pitch conditions were not considered 
here because of the known wheel load bias created by the rotor loads. 

CG measurements were observed to trend with the known CG using a best fit line, although a 1-
sigma error of about 3 inches, or roughly 12% of the total UH-60 CG range of 342–366 inches, 
was observed. Results for CG measurements are susceptible to more sources of error than the 
GW measurements due to the assumption of nominal strut positions. Knowledge of the strut 
positions, derived from accurate measurements in production aircraft, could possibly reduce this 
uncertainty. 
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Figure 29. CG measurement performance 

2.2.1.4.4  Temperature Sensitivity 

Both the Epsilon TLG sensor and reference MLG strut sensors were found to be sensitive to 
temperature by comparing in-flight sensor output against measured outside air temperature from 
the aircraft’s air data system. This approach to assessing temperature sensitivity is not precise 
because the air temperature does not equate to the temperature of the landing gear, and the 
assessed flight conditions (hover and LF) are not true unloaded conditions because the 
aerodynamics may be applying non-trivial loads to the landing gear. When transitioning from the 
hangar to the outside, the landing gear may be transitioning from a stable 55° F to the ambient 
30° F conditions over a period of roughly an hour. While imprecise, the approach does indicate a 
linear relationship between sensor output and temperature. Figure 30 shows the reference MLG 
sensor output for various in-flight conditions plotted versus outside air temperature. An output 
range of roughly 0.035 MV/V was observed, relative to a full-scale range of at max GW of 0.600 
MV/V, which means that the temperature sensitivity of the reference sensors can influence the 
wheel load measurement by roughly 6% over the range of tested flight temperatures. Figure 31 
shows this same data for the Epsilon TLG sensor with a range of roughly 0.35 nm, relative to a 
full-scale range at max GW of 2.9 nm. The temperature sensitivity of the Epsilon TLG sensor 
can influence the tail wheel load result by as much as 12%. It should be noted that the SAC 
reference measurement is made using a full Wheatstone bridge strain gage system, which is 
designed to cancel temperature effects that equivalently strain the unloaded legs of the bridge. 
However, the Wheatstone bridge in this application may only be alleviating the effect of 
temperature variation rather than eliminating it. On the other hand, the TLG sensor data has no 
temperature mitigation applied to it. As noted in section 2.2.1.2.1, the temperature compensating 
channel was found to be unreliable and therefore not used to correct the Epsilon TLG strain 
output for temperature. 
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Figure 30. MLG strut in-flight output versus outside air temperature 
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Figure 31. Epsilon TLG in-flight output versus outside air temperature 

2.2.1.4.5  Other Applications of Landing Gear Sensors 

While the focus of this project was to demonstrate the ability to measure vehicle GW with 
landing gear sensors, there are several other applications of landing gear sensors that were 
captured in figure 32 during a heavy landing event. WOW switches are the current standard 
method for determining if the aircraft is on the ground; however, WOW switches typically 
require several thousand pounds of force applied to the gear in order to actuate the switch. Future 
fly-by-wire flight control systems will require knowledge of ground contact well before 
traditional mechanical WOW switches will actuate. Figure 32 shows that the landing gear load 
sensors detected ground contact through the tail wheel eight seconds prior to the WOW switch 
actuating. Load was sensed on all three wheels 3 seconds prior to actuation of the WOW switch. 
In addition to sensing ground contact, the right wheel load sensor also recorded a peak transient 
landing load. Detection of load exceedances for specific gear or tracking of fatigue cycles over 
the lifetime of the gear are additional important capabilities that are enabled by a robust landing 
gear load monitoring system.  
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Figure 32. Hard landing event from Flight #1 

2.2.2  Direct Monitoring of Loads 

The following presents a review of various direct load monitoring design considerations that 
would need to be assessed in much more detail in the context of certifying a HUMS-based load 
monitoring approach for the management of the fatigue life of dynamic components in service. 
The effects of various measurement parameters on the measured load signal and calculated 
fatigue damage were evaluated through a simulation study that was carried out using S-92 
aircraft flight test data and a component fatigue damage model.  

Strain sensors are widely used to monitor a load subjected to critical aircraft structures and 
dynamic components in flight test environments. Because the strain sensor is sensitive to its 
orientation/location, wiring, and especially thermally induced strain, it is often calibrated and 
recorded after installation and at the beginning of each test run. The thermally induced strain 
varies with temperature during flight and can vary from flight to flight depending on when a zero 
reference strain was recorded and assigned to each strain sensor measurement and the ambient 
air temperature on the day the zero was recorded. Therefore, the actual loads (or strain/stress) 
experienced by the structures should be obtained by eliminating the zero reference strains from 
newly measured strain outputs and implementing standard temperature compensation techniques. 
This highlights just one unique challenge to strain-based load measurement in a fleet monitoring 
application where sensor attachment location and orientation can vary slightly even with 
carefully designed installation techniques.  
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2.2.2.1  Identification of Measurement Parameters 

While temperature has a critical influence on load measurements using a strain sensor, other 
measurement parameters can also affect the strain output and subsequent load estimate. Table 5 
lists a comprehensive set of measurement parameters, which are categorized into attributes and 
faults. The attribute parameters are configured in the measurement system design/installation 
processes, whereas any faults are captured during the data acquisition process. A direct use of 
signals with inaccurate configuration of attribute parameters or in the presence of faults can 
result in erroneous load measurement. Table 5 also describes possible issues for each parameter, 
their effects on a signal itself and/or load estimate, recommendations to address the issues, and 
simulation and detection methods to test and evaluate a sensitivity of load estimation model on 
each parameter variation. Listed in the last two columns is the complexity of simulating and 
detecting parameter variation. 

For each measurement parameter in table 5, possible issues encountered when using suboptimal 
parameter settings and their effects on the load estimate are presented, along with 
recommendations to consider when designing a measurement system for a particular fleet 
monitoring application. 

For production fleet aircraft applications, it would be hard to devise monitoring methods to 
detect inappropriate configurations of attribute parameters listed as “complex” or “not applicable 
(N/A)” in the table. Thus, it is important when designing LGLMS that the end-use of the load 
measurements is known and appropriate attribute configurations are defined to accurately 
capture loads for these end uses. They should be further validated during flight tests conducted to 
gather data representative of intended end uses. On the other hand, faults can be detected and 
isolated through standard signal quality assessment processes not described in this document. 
Therefore, the following simulation study of parameters variation will be limited to attribute 
parameters, and the results can be used as initial guidelines on minimum hardware and digital 
processing requirements for LGLMS and sensors. 

Considering the complexity of parameters and variation, methods of detection, and availability of 
simulation methods, the following three representative attribute parameters were selected for 
simulation and sensitivity study: 

1. Sample rate: The Nyquist sampling theorem states that the information of a signal is
ideally recovered when it is sampled at a minimum of twice the highest frequency (also
called the Nyquist frequency) contained in the signal. Non-ideal sampling rates can result
in significant amplitude inaccuracies in the reconstruction of a signal sampled at or near
the Nyquist sampling rate. In the typical instrumentation system, if amplitude accuracy is
required, it is common to sample at least five times the highest frequency of interest.
Even in less than ideal conditions, it is possible to accurately determine the frequency
content of a signal sampled near the Nyquist sampling rate. The ability to accurately
reconstruct the frequency content of a signal sampled near the Nyquist sampling rate is
crucial to the prevention of aliasing. Sampling a signal at less than the Nyquist sampling
rate can induce aliasing effects and also loss of useful frequency information contents due
to insufficient time resolution.
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2. Sensitivity error: Sensitivity is measured by the magnitude of the output signal
corresponding to a unit input of the measured signal along the specified sensitive axis and
describes a linear relationship between input and output signals, as shown in figure 33. It
may be expressed as the ratio of the incremental output to incremental input, which is
essentially a gain. The load sensors (or stain gages) should be sensitive enough to
measure the smallest amplitude required for the intended application and detect the signal
at the specified mounting location of the sensor. Also the sensor’s off-axis sensitivity
should be 5% or less than the on-axis sensitivity. The sensitivity of a sensor is determined
by a calibration process at specified operating conditions and used in converting a
measured voltage signal to an engineering unit. However, it can be affected by multiple
factors: miscalibration, output signal exceeding sensor limits, and system or sensor
nonlinearity.

3. Sensor bandwidth (or useful frequency range): The bandwidth of a sensor is defined as
the frequency range over which the magnitude of the ratio of the output to the input does
not differ by more than ±3 dB from its nominal value, as shown in figure 33. To ensure
sufficient sensor response, the bandwidth or useful frequency range of the sensor should
exceed the frequency range of interest for the components being monitored. The signal
levels for measurements outside the bandwidth could be very inaccurate. This means that
a linear relationship between excitations and sensor responses can be changed into a non-
linear relationship.

Figure 33. Sensitivity and bandwidth 
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Table 5. Identification of measurement parameters 

Category Parameter Possible Issues 
Effects on Signal and 

Load Estimate Recommendations 
Level of 

Simulation Level of Detection 

Attribute Sample rate Low sample rate 

Insufficient time 
resolution, aliasing, 
and loss of useful 
information 

• Increase sample rate
to at least 2.56 times
of anticipated max
frequency

Moderate. 
Combination of 
filtering and 
interpolation 

Complex.  
Should know max 
frequency and 
resulting error (or 
aliasing) frequency 

Attribute
/fault Sensitivity 

System 
nonlinearity and 
miscalibration of 
measurement 
system 

Signal magnitude 
change and erroneous 
information signal 

• Correct calibration
and check
measurement system
linearity

Simple. 
Multiplication of 
scale factor 

Complex. 
Generation of a load 
signal with other 
measurements and 
comparison with a 
direct load 
measurement 

Attribute 

Sensor 
bandwidth 
(useful 
frequency range) 

Frequency of 
interest exceeds 
bandwidth 

Nonlinear signal 
output and erroneous 
information signal 

• Select proper sensor
with bandwidth
exceeding frequency
range of interest

Complex. 
Combination of 
Fourier analysis, 
transfer function, 
and exponential 
function (or 
lowpass filtering) 

Complex 
Should know 
expected signal 
level to compare the 
level with actual 
signal level at 
specific frequency 

Attribute Data length Limited data 
length 

Insufficient 
frequency resolution 
and loss of 
information signal 

• Determine data
length and sample
rate to catch
frequency
components of
interest

Simple. 
Trim data points 

Simple 
Check data length 
or frequency 
resolution 

Attribute Synchronization 
Time gap 
between DAQ 
channels 

Erroneous load 
estimation 

• Synchronize data
recording

Moderate. 
Combination of 
Fourier analysis 
and exponential 
function 

Moderate.  
Only if 
commensurate 
signals available. 
Use cross 
correlation function 
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Table 6. Identification of measurement parameters (continued) 

Category Parameter Possible Issues 
Effects on Signal and 

Load Estimate Recommendations 
Level of 

Simulation Level of Detection 

Attribute 
Signal 
amplification 
(gain) 

Wrong gain 
setting 

Out of signal range, 
coarse dynamic 
resolution, and 
erroneous 
information signal 

• Proper gain setting
considering signal
range and dynamic
resolution

Simple. 
Multiplication of 
scale factor 

Complex. 
Generation of a load 
signal with other 
measurements and 
comparison with a 
direct load 
measurement 

Attribute Dynamic 
resolution 

Insufficient 
dynamic 
resolution or 
higher resolution 
than sensitivity at 
given DAQ bit 
and signal range 

Quantization error, 
uniformly distributed 
noise power over 
entire frequency 
spectrum, and loss of 
useful information 

• Increase DAQ bit or
decrease signal
range

N/A 
Matter of ADC N/A 

Attribute Installation error 

Poor bonding, 
misalignment, 
off-positioning, 
isolation, and 
ground loop 

Sensor drift, signal 
nonlinearity, and 
erroneous 
information signal 

• Check sensor
installation/wiring
and calibrate sensor

N/A 
Complex. 
Trend analysis with 
linear fit 

Attribute Configuration 
parameters 

Incorrect 
configuration 
parameters setting 

Erroneous 
information signal 
and load estimation 

• Check and correct
configuration
parameters

N/A N/A 

Attribute Windowing Wrong choice of 
window function 

Smearing or 
magnitude change, 
and erroneous 
information signal 

N/A N/A N/A 
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Table 7. Identification of measurement parameters (continued) 

Category Parameter Possible Issues 
Effects on Signal and 

Load Estimate Recommendations 
Level of 

Simulation Level of Detection 

Attribute Hysteresis Mechanical 
hysteresis 

Signal nonlinearity 
and erroneous 
information signal 

• Right choice of
sensors and
installation

N/A N/A 

Fault Random error Electrical and 
mechanical noises 

Masking information 
signal and erroneous 
information signal 

• Proper ground &
insulation & wiring,
matching sensor/test
structure materials

• Apply noise
reduction methods
and minimize the
noises

Moderate. 
Combination of 
deterministic 
signal with 
specific 
frequency 
harmonics and 
random number 
generation 

Complex. 
De-noising 
technique or 
frequency 
analysis/peak 
picking 

Fault Signal range Out of signal 
range 

Signal clipping, 
modulation, and loss 
of useful information 

• Increase range for
capturing expected
excursion in signal

• Remove clipped
points and
interpolate the points
from good sample
points

Simple.  
Clipping some 
sets of data 
samples 

Simple.  
Check clipped 
samples 
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Table 8. Identification of measurement parameters (continued) 

Category Parameter Possible Issues 
Effects on Signal and 

Load Estimate Recommendations 
Level of 

Simulation Level of Detection 

Fault Missing data 
points 

Missing data 
samples in 
dynamic sensors 
and A/C 
parameters 

Loss of actual 
information signal 

• Check all
measurement system
from sensors to
DAQ system and
remove snapshots
with missing data
points

• Evaluate how much
data can be replaced
or removed before
too much error is
introduced, or
reliability is affected

Simple.  
Substitution of 
NaN (i.e., Not a 
Number) or Inf 
(i.e., infinite) 
points 

Simple.  
Logical and data 
length 

Fault Signal jump, 
scatter increase 

Measure system 
damage 

Signal transition and 
erroneous 
information signal 

• Check and replace
measurement system

• Detect jump points
and remove a bias or
balance segments
before/after jump

• Detect scattering
points and discard
the scattered points
or all points

Moderate. 
Multiplication of 
step function 

Moderate.  
Statistical change 
detection 
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Table 9. Identification of measurement parameters (continued) 

Category Parameter Possible Issues 
Effects on Signal and 

Load Estimate Recommendations 
Level of 

Simulation Level of Detection 

Fault Linearity 

Miscalibration, 
sensor damage, 
and out of 
operating ranges 

Sensitivity error and 
erroneous 
information signal 

• Correct calibration
• Use sensor within

operating ranges
• Isolate and subtract

nonlinearity from
signal

Moderate. 
Multiplication 
with nonlinear 
function 

Moderate.  
Trend analysis with 
linear fit 

Fault Sensor drift 

Output signal 
change 
independent of 
measured 
property 

Sensitivity error, 
sensor nonlinearity 
and erroneous 
information signal  

• Use half- or full-
bridge strain sensors
to minimize the
effects of operating
conditions and
replace sensor
before a sensor starts
drift by aging

• Isolate and subtract
linearity or
nonlinearity from
signal

Moderate. 
Linear trend 

Moderate. 
Trend analysis with 
linear fit 

Fault Bias error 
Signal output 
when measured 
property is zero 

Gauge factor change 
and erroneous 
information signal 

• Common ground of
sensor and
measurement
system, zero setting
before measuring
property, and use
half-or full-bridge
strain sensors

Simple. 
Addition of scale 
factor 

Simple. 
Mean 



2.2.2.2  Test Matrix 

Table 6 is a test matrix that was used to generate simulation data for variations of the selected 
attribute parameters using the simulation methods defined in table 5. It also includes the levels of 
each parameter variation and basis/rationale for level selection. The simulation data were then 
fed into a load estimation model for sensitivity study. The estimated loads were correlated to 
levels of matching parameters to evaluate the effects of variations in the selected attribute 
parameters on direct load monitoring accuracy. 

Table 10. Test matrix for simulation and sensitivity study 

Parameter Level Basis/Rationale 
Sample rate (0.75, 1, 1.5, 2, 3) × 

anticipated 
maximum 
frequency (or 
Nyquist frequency) 

A key reason of optimal sample rate selection is to 
avoid aliasing and reconstruct an original waveform. 
Because a minimum required sample rate is 2.56 
times the Nyquist frequency and higher sample rates 
over 2.56 result in almost the same waveform 
reconstruction, limit a level of the highest sample 
rate to 3 times and drop the sample rates to 0.75 
times the Nyquist frequency. 

Sensitivity Nominal sensitivity 
±5 steps (2% 
sensitivity change 
per step) 

A sensitivity (or GF) of strain sensor can be changed 
from a reference (or nominal) value according to 
miscalibration, installation errors, operating 
conditions, and sensor/system nonlinearity. The 
sensitivity is typically determined with a tolerance 
of less than 1%. Considering the sensitivity variation 
of the sensor itself and other influences, extend the 
tolerance up to ±10% for the sensitivity study.    

Sensor 
bandwidth 

Nyquist frequency-
10 steps (5 Hz 
change per step) 

When a frequency response of the component being 
monitored exceeds a sensor bandwidth (or useful 
frequency range), a measured sensor signal would 
be distorted or exaggerated. Considering an 
anticipated maximum frequency (or Nyquist 
frequency), simulate a sensor response with 
bandwidths of less than the Nyquist frequency. 
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2.2.2.3  Simulation of Parameter Variation 

As described in table 5, for simulation of sample rate variation, a polyphase implementation 
method is used to resample the data at a modified sample rate, and an anti-aliasing filter is 
applied to the data during the resampling process. A default filter order is 10. For sensitivity 
variation, a scale factor corresponding to a sensitivity error is directly multiplied to an original 
data signal. For sensor bandwidth, a linear phase lowpass filter using lease-squares error 
minimization is used to limit the bandwidth. A signal out of band will be distorted or 
exaggerated.  

Based on the test matrix defined in table 6, the simulations were performed on each variation 
level of the parameter. An MR right servo load sampled at 172 Hz from S-92 aircraft flight tests 
was used as reference data for the simulation. Figure 34 shows a simulation result of sample rate 
variation. The top plot includes the original 172 Hz (blue line) and resampled 65 Hz (red line). 
The 65 Hz is calculated by multiplying 0.75 by the Nyquist frequency. There is a big difference 
between the signals; this is much clearer in the bottom plot depicting the difference between the 
two signals. Figure 35 is an example of 10% sensitivity error. The top plot shows the original 
and simulated signals, the bottom plot the difference between the signals. It can be shown that 
the signals are close to each other. The top plot of figure 36 shows the original and lowpass 
filtered signals with a cutoff frequency of 36 Hz, while the bottom plot shows a clear difference 
between the signals. The original signal components above the cutoff frequency were filtered out 
or highly suppressed.  

In summary, it can be inferred that the sample rate and sensor bandwidth variation would highly 
affect load estimation, but the sensitivity error of below 10% would have relatively minor effects 
on load measurement. The effects on fatigue damage assessment are discussed next.  

Figure 34. Example of sample rate variation—down sampling signal 
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Figure 35. Example of sensitivity error—10% higher sensitivity 

Figure 36. Example of sensor bandwidth variation— 
lowpass filtering with cutoff frequency of 36 Hz 
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2.2.2.4  Effect of Parameter Variation on Damage Calculation 

As described in section 2.2.2.2, damage accumulation model results were used as a test case for 
simulating the effects of variations in load signal data. An MR right servo load was used as a 
reference load for the simulation in conjunction with a CRT calculation for the MR stationary 
swashplate assembly. The existing CRT provides a ground-truth damage fraction for comparison 
against the output of the damage accumulation model when the simulated variable data are used 
as input. Both a damaging steady-state and damaging transient flight-test maneuver were 
selected for the simulation analysis. The damage accumulation model was developed and 
verified against the reference CRT outputs for the two damaging flight-test maneuvers prior to 
using the simulated variable data inputs.  

The damage accumulation model was executed for all levels of measurement parameter variation 
(as previously defined in table 6) across both sample test maneuvers for each of the three 
parameters under investigation: sample rate, sensitivity error, and sensor bandwidth. The 
resulting damage fraction calculations were tabulated and plotted, as shown in figures 37–39. 

Of interest is the effect of load variability both within a maneuver as well as across maneuvers. 
Sampling rate and sensitivity error results suggest the effects share similar trends across the two 
test maneuvers; however, sensor bandwidth results present nearly inverse trends across the 
maneuvers. Additionally, within each maneuver, the effects of the three tested parameter 
variations show no correlations. This suggests one would need to study each type of parameter 
variability before making generalized statements about the effects of all variabilities across, as 
well as within, maneuvers. 

In addition, the percent change in damage fraction from the baseline for each level of parameter 
variation was calculated. The following conclusions were drawn: 

1. Sample rate variability showed a profound effect when decreasing from the commonly
accepted minimum required sample rate of 2 times the Nyquist frequency. A drop from 2
times to 1.5 times the Nyquist frequency resulted in a reduction of more than 50% in the
damage estimation result for both regimes.

2. Sensitivity error variability showed a much less abrupt change with each level of
variability. A 2% change in sensitivity error resulted in less than a 20% change in the
damage estimation from baseline. However, both regimes exhibited a greater than 85%
change from the baseline when sensitivity variation levels reached 10%.

3. Sensor bandwidth variability did not produce a monotonic relationship between
parameter variability levels and the resulting damage estimation results. While the
percent change from baseline never exceeded 60% for all levels of bandwidth variability
for Regime 59, the effect appears to be unpredictable. Regime 18 demonstrated an even
greater effect, with a similarly unpredictable relationship.
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In summary, it can be inferred that the sample rate and sensor bandwidth variation are difficult to 
model and would highly affect load estimation. In contrast, low levels of sensitivity error 
variability influence the damage state estimation less dramatically and more predictably. 
Furthermore, known uncertainties in sensitivity could be accounted for by including uncertainty 
models and conservative uncertainty compensation when using loads to calculate damage for 
production aircraft. 

Figure 37. Effect of sample rate variation of load data on the damage fraction 

Figure 38. Effect of sensitivity error variation of load data on the damage fraction 
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Figure 39. Effect of sensor bandwidth variation of load data on the damage fraction 

2.3  RELIABILITY FRAMEWORK 

2.3.1  Background 

The process of calculating component RTs is often considered somewhat of an art due to the 
limited availability of information about flight loads, strength, and usage—especially in the 
development phase. Flight testing provides maneuver loads data but is often limited to the edge 
of the envelope configurations due to cost/schedule constraints. Full-scale component testing is 
performed on multiple specimens, but these tests can produce as many suspensions as failures, 
resulting in “demonstrated” fatigue strength limited by test constraints, or cost/schedule 
limitations rather than maximum potential fatigue strength limited by the component itself. 
Usage spectra are derived from a combination of legacy specifications, pilot surveys, and the 
limited use of fleet data. These key RT inputs are typically known in terms of fleet population 
statistics but are treated as unknown at the specific serial number level for a fielded part. To 
provide a high level of fatigue reliability for each component failure mode, RTs are calculated 
with an extreme combination of low strength (assumed 0.1 percentile, or 100‒99.9), CWC usage 
(assumed 90th percentile), and top of scatter flight loads (assumed 99th percentile). The 
probability of an individual serial number simultaneously exceeding all of these extreme input 
values is one in a million, resulting in an expected fatigue reliability of approximately six -9s 
(0.999999)— a fairly well-accepted industry reliability goal for fatigue life limited components. 

The traditional process described above is one way to achieve the reliability goal for a part 
number. Part number reliability means that the reliability goal for the part number is achieved, on 
average, when considering the entire population of fielded parts and can be expected to be 
achieved by any individual serial number as long as the particular combination of 
loads/strength/usage information remains uncertain at the serial number level. That last condition 
is important to note because the part number reliability approach is premised on the condition 
that loads/strength/usage cannot be observed in service and therefore treats loads/strength/usage 
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as uncertain at the serial number level even if some elements of historical usage are known from 
fleet data.  

It is logical to assume that if usage data were entirely known, or the important aspects of usage 
for a particular component were known (such as GAG rates for a rotor hub), then the reliability 
of each serial number part will vary depending on how the aircraft is being flown. In the rotor 
hub GAG example, helicopters flown at the highest GAG rate will have less than the average 
reliability, while helicopters flown at the lowest GAG rate will have more than the average 
reliability. If the GAG statistics still obey the original usage assumptions (such as 90th percentile 
in the usage spectrum), then the part number reliability goal may still, on average, be achieved; 
however, it is only achieved by averaging out the lower serial number reliabilities with higher 
serial number reliabilities. This should not be a surprise, as it is expected that actual usage varies 
by aircraft, just as strength varies by component. The only difference is that usage data are 
measurable in the field, whereas component strength is not. 

To understand how usage data influence the calculated CRT of a particular component, one 
might simply substitute the CWC (90th percentile) usage statistic with the actual 
measured/recorded/calculated usage metric for a particular serial number and recalculate the life 
using the traditional RT calculation process. The problem with this approach is that the 
traditional calculation achieved a part number reliability by applying a generally conservative 
assumption to the usage metric. That conservative assumption is eliminated when substituting 
the 90th percentile usage with known usage. To take that concept further, if all the inputs 
(loads/strength/usage) were known precisely, then the traditional calculation process would have 
no conservatism applied and would result in an expected failure time rather than a six-9’s 
reliable safe life. 

2.3.2  Defining a Failure Model 

To understand fatigue reliability when dealing with known usage data, fatigue failure must be 
modeled within a probabilistic framework that accounts for uncertainty of loads/strength/usage 
holistically rather than by allocating a reliability-based margin to individual input parameters. 
This process starts by defining a failure model (defined in the form of a limit state function), a 
set of input assumptions (a combination of uncertainty distributions and fatigue properties), and 
solving for the reliability at a prescribed lifetime using a probabilistic solver (such as Monte 
Carlo or the first-order reliability method [FORM]). This approach can flexibly model the 
traditional part number reliability as well as the serial number reliability based on fleet data if the 
inputs are properly defined and can do so while conserving reliability. It is important that the 
probabilistic approach is consistent with the traditional approach in terms of the failure model 
and input assumptions, such that the results from each process can be directly compared. For 
example, the traditional part number RT calculation can be used as a cross-check to compare the 
result using the probabilistic approach. To be tractable, it is also important that the failure model 
be a simplified model such that the number of random variables is minimized to a practical set of 
key variables and any simplifications of the model be conservative. The use of a simplified 
model means that any resulting failure probability should not be treated as a true probability of 
failure but rather as a conservative best estimate based on appropriate assumptions. 
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To explain how the traditional failure model can be used in a probabilistic framework, consider 
the example in equation 1, which shows a simplified fatigue failure model that is used to 
calculate an RT with six-9’s reliability. The term inside the square brackets is the familiar 
Miner’s rule of cumulative damage, where the regime usage (n) is defined as a rate per flight 
hour, which results in the cumulative damage term being defined as damage per flight hour. The 
function f(Si,E) is based on a stress cycles fatigue curve (S-N curve), where the flight load (S) 
intersects with a cycles-to-failure curve set by the component fatigue endurance strength (E) 
determined from lab testing and material parameters. The inverse of the damage per flight hour 
term is the number of flight hours when damage equals 1. By allocating “9s” to each input, this 
method approximates the six-9’s RT. To solve for the probability of failure at a given RT using a 
probabilistic approach, this equation must be translated into a limit state function. A limit state 
function has the property where the function value is negative for a failed state and positive for a 
safe, un-failed state. The limit state function that is consistent with the traditional failure model is 
shown in equation 2. Here, the first term is the failure time model borrowed from equation 1, and 
the second term is the desired RT. This function has the property where g is negative when the 
RT exceeds the failure time (failed state), while g is positive when the failure time exceeds the 
RT (safe state). The probability of failure is then the probability that g<0. By solving for the 
probability of failure for a range of input RTs, a life versus reliability can be plotted to determine 
the RT associated with a desired reliability. 
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2.3.3  Input Assumptions 

2.3.3.1  Strength 

Three 9s of reliability are often attributed to the reduction traditionally applied to an S-N curve to 
arrive at a reduced-strength or working curve for use in CRT analysis. This working curve 
represents a strength reduction of 3-sigma (roughly three 9s). In a probabilistic framework, the 
test based mean fatigue strength and 3-sigma reliability reduction can be applied to model the 
component’s fatigue endurance strength as a random variable. This can be accomplished by a 
normal distribution that has the same mean and standard deviation as is assumed in the 
traditional fatigue analysis. 

(1) 

(2) 
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Consider an S-N curve with a mean endurance limit of 11,600 lbs and a 61% working endurance 
limit of 7,077 lbs. The mean endurance is set as the mean of the normal distribution. The 
working curve knockdown of 39% (100‒61%) represents 3-sigma, so 13% of the mean 
represents the standard deviation of strength (39/3 = 13%). For a normal distribution, the mean 
and standard deviation sufficiently define the probability density function and can be used in the 
probabilistic analysis to represent random fatigue strength that obeys the assumptions in the 
traditional fatigue substantiation analysis methodology. 

2.3.3.2  Load 

Two- 9s are often attributed to the use of top-of-scatter flight loads from flight tests. Modelling 
loads from flight tests as a distribution of random variables is very difficult due to the number of 
factors that influence load within a given regime (such as airspeed, GW, CG, control input rate, 
and altitude). There are rarely enough flight test data points to control for these factors when 
considering the large number of combinations of factors that would need to be considered. 
Rather, the peak flight test load from all occurrences and combinations of factors within a given 
regime is assumed to occur for all occurrences of the regime in CRT analysis. It is assumed in 
standard fatigue methodology that this top-of-scatter load achieves at least the 99th percentile 
peak fatigue load. The Weibull random variable distribution is commonly used for this 
application with a shape parameter that can be estimated from flight test data or assumed based 
on experience. Values of 2–10 were used in a similar probabilistic analysis documented in a 
paper by Zhao and Adams [8], with lower values indicating a higher degree of variation in the 
random loads. Specific studies may be carried out to refine the Weibull shape parameter based 
on flight test data, although flight test data rarely provide a random sampling of peak fatigue 
loads achieved in normal fleet operations due to the edge-of-envelope configurations of the flight 
test aircraft. As an example, consider an MR pushrod top-of-scatter vibratory flight test load of 
11,300 lbs during a moderate pullout at 0.8 VNE, and shape parameter of four. Equations 3 and 4 
can be used to solve for the Weibull scale parameter, which will sufficiently define the random 
load distribution for use in fatigue reliability modeling:  
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F = cumulative probability of flight test top-of-scatter fatigue load = 0.99 (two--9s) 
x = flight test top-of-scatter fatigue load = 11,300 
β = Weibull shape parameter = 4 
η = Weibull scale parameter 

The missing distribution scale parameter for this random load distribution can now be solved as 
η = 7714. Using this approach, the load distribution can be modeled analytically in a way that is 
consistent with the assumptions in the traditional fatigue substantiation analysis methodology 
and leveraged in a probabilistic analysis tool. 

(3) 

(4) 
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2.3.3.3  Usage 

One-nine is often attributed to the CWC usage spectrum. In the absence of usage monitoring, 
distributions of usage across a fleet are typically not well understood, especially for a new 
aircraft or customer. It is commonly assumed in reliability studies that the usage parameter varies 
as a Weibull parameter with a shape parameter β of 2 [8], although these parameters can now be 
better estimated from fleet data using RR. By setting the regime usage metric (either maneuvers 
per 100 hours or % time) from the CRT as the 90th percentile usage as an anchoring point, a 
distribution can be attained for model random usage. The derivation of the Weibull scale 
parameter is the same, as shown in the load example. Consider an example CRT where the 
moderate pullout 0.8 VNE has a CWC usage of 90 maneuvers per 100 hours. Using equations 3 
and 4 in the load example, the Weibull scale parameter η = 59.3. Using these Weibull 
distribution parameters, the usage distribution can now be modeled in a probabilistic tool. 

2.3.4  Probabilistic Solver 

Having defined the physics of failure model, the next step is to choose a probabilistic approach 
to estimate the probability of failure. Over the years, there have been numerous documented 
approaches. The most widely used approach is the Monte Carlo simulation method, due to its 
relatively intuitive and straightforward implementation. A major disadvantage of Monte Carlo 
occurs when estimating very small probability of failure (<1E-6) combined with a large number 
of input variables because it requires a very large number of simulations to obtain an acceptable 
level of accuracy. For example, the number of samples needed for achieving an accurate 
probability of failure that is equal to 10E-6 is 10 million. In general, to estimate the total number 
of samples required is obtained by using the following approximation:  

𝑁𝑁 ≅ 10
𝑝𝑝𝑓𝑓

 

Where N corresponds to the total number of Monte Carlo simulations, and 𝑝𝑝𝑓𝑓 is the required 
probability of failure estimate.  

Fast reliability integration methodologies have been introduced within the past three decades 
with the purpose of providing more efficient approaches to estimate probability. The FORM is 
the approach that has been chosen to estimate structural reliability of rotorcraft components [8]. 
This particular approach is purely analytical and requires the physics of failure model to be 
converted into a limit state function. The limit state function, defined as the boundary separating 
the safe region from the failure region, as described above, is shown notionally for a 2-
dimensional function in figure 40. 

(5) 
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Figure 40. 2D case limit state function 

In the general case, the limit state function is derived from the performance function, which is 
described as:  

𝑍𝑍 = 𝑔𝑔(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛) = 𝐷𝐷critical − 𝐷𝐷current 

Where X represents the set of input random variables. Dcritical is the critical damage threshold 
where the component is treated as failed, and Dcurrent is defined as the current damage estimate. 
The limit state function is considered a special case of the performance function, specifically 
when: 

𝑍𝑍 = 0 

The probability of failure can be defined in the following integral: 

𝑝𝑝𝑓𝑓 = ∫…∫ 𝑓𝑓𝑋𝑋�𝑥𝑥1,𝑥𝑥𝑛𝑛, … 𝑥𝑥𝑛𝑛�𝑑𝑑𝑥𝑥1𝑑𝑑𝑥𝑥2 …𝑑𝑑𝑥𝑥𝑛𝑛𝑍𝑍<0  

Where 𝑓𝑓𝑋𝑋�𝑥𝑥1,𝑥𝑥𝑛𝑛, … 𝑥𝑥𝑛𝑛� is the joint probability density function for the random variables 
𝑋𝑋1,𝑋𝑋2 …𝑋𝑋𝑛𝑛. 

The integration is evaluated over the failure region Z < 0. 

Although the integral above is the general representation of probability of failure, it cannot be 
solved directly. In order to estimate probability, analytical approximations were introduced, and 
one of them was the FORM. There are multiple variations of FORM and each of them can be 
applied under specific assumptions. The method used in this case is named FORM 1 [9]. In the 
general case, the main objective of FORM is to estimate the minimum distance to the limit state 
function in a standardized coordinate system. The minimum distance is also known as the 
distance to the most probable failure point and is defined with the symbol β. The worst 

 

(6) 

(7) 
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combination of the stochastic input variables will lead to the most probable point of failure. In 
order to calculate β, the approach is structured as a gradient-based optimization method:  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷 =  √𝑥𝑥′𝑡𝑡𝑥𝑥′ 

𝑊𝑊𝑀𝑀𝑊𝑊ℎ 𝑐𝑐𝑐𝑐𝑀𝑀𝑐𝑐𝑊𝑊𝑐𝑐𝑐𝑐𝑀𝑀𝑀𝑀𝑊𝑊 𝑔𝑔(𝑥𝑥) = 𝑔𝑔(𝑥𝑥′) = 0 

Where 𝑥𝑥′ is the coordinate evaluated on the limit state function evaluated in the reduced 
coordinate system. The minimum distance is calculated using the method of Lagrange 
multipliers:  

𝛽𝛽 =
∑ � 𝜕𝜕𝑔𝑔𝜕𝜕𝑋𝑋𝑖𝑖′

�
∗
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𝑛𝑛
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The design point in the reduced space is calculated as follows: 

𝑥𝑥𝑖𝑖′∗ = −𝛼𝛼𝑖𝑖𝛽𝛽 𝑓𝑓𝑐𝑐𝑐𝑐 𝑀𝑀 = 1,2, …𝑀𝑀 

Where 𝛼𝛼𝑖𝑖  is defined as the directional cosine along the axis 𝑋𝑋𝑖𝑖 and is calculated as: 

𝛼𝛼𝑖𝑖 =
� 𝜕𝜕𝑔𝑔𝜕𝜕𝑋𝑋𝑖𝑖′
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Where 𝜎𝜎𝑋𝑋𝑖𝑖
𝑁𝑁  is the standard deviation at the design point in the equivalent normal distribution. One 

important detail about this approach relates to the type of input distributions used for the random 
variables; if the distributions are not normal, they must be converted into equivalent normal.  

The optimization procedure is summarized in the following steps: 

1. Define the limit state function
2. Assume an initial value for β and initial values for the design point coordinates: 𝑥𝑥𝑖𝑖′,

i=1,2,…n
3. Transform non-normal variables into equivalent normal, and compute mean and standard

deviation
4. Compute directional cosines
5. Compute updated value for β
6. Repeat steps 1–5 until β reaches convergence

(8) 

(9) 

(10) 

(11) 
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Once β is calculated, the probability of failure is calculated by using the standard normal 
cumulative density function defined as: 

𝑝𝑝𝑓𝑓 = 1 − 𝜑𝜑(𝛽𝛽) 

Where 𝜑𝜑 is the standard cumulative density function. 

In summary, FORM is very efficient at estimating small probability of failures and capable of 
handling a large number of input variables. The algorithm converges rapidly within five to 10 
cycles, depending on the complexity of the limit state function. Unfortunately, there are cases 
where convergence to a β solution is not always guaranteed. When convergence is an issue, the 
selection of initial conditions, based on knowledge of the physics of failure model and how the 
input variables influence output, becomes very important. 

In the mock certification section that follows, this methodology is applied to independently 
validate the use of Usage Monitor Reliability Factors (UMRFs) in recurring serial number life 
calculations. The probabilistic framework is applied and demonstrated to provide reasonable 
results as validated against the baseline component RTs detailed in section 3.5.3.3. 

3. MOCK REGIME-BASED UBM CREDIT CERTIFICATION

3.1  CREDIT DEFINITION 

A UBM credit application must define the component(s) affected, specific type of credit (e.g., 
RT extension, serial number versus part number extension, one-time versus continuous credit 
calculations), usage and load parameters required to calculate the UBM credit, and HUMS 
method or algorithms required to calculate and substantiate the credit. A moderately complex 
UBM credit application involving the extension of the RTs for individual serial numbers for a 
selected life-limited part number, which requires regime monitoring of two or more critical 
regimes, was selected as the focus of the mock credit application documented herein. It was also 
decided to develop an approach that could be successively applied for a given component serial 
number. This representative application was deemed to be a significant step beyond the “crawl 
before your walk” rotor hub credit previously approved by the FAA for the S-92 aircraft, which 
required monitoring of min-max values of only one aircraft state parameter (i.e., MR RPM) 
during each flight. Based on the recent progress achieved in refining and validating regime 
clustering, the selected credit focus was deemed to be achievable in practice and ready for near-
term credit applications using only data already recorded by HUMS/IVHMS, where there was no 
need for additional physical sensors. While the application of virtual estimation of GW and loads 
also fall into this category of credits, it was decided to focus on a regime-based “walk before you 
run” application for two reasons. First, a regime-based application is readily understood by 
various stakeholders. Second, it is also a tractable application that could be completed within the 
allocated budget and schedule of the FAA program. The addition of virtual monitoring of GW 
and/or CG would only moderately increase the complexity but would require additional 
socialization to obtain concurrence from various stakeholders because the S-92 aircraft usage 
spectrum does not currently apply GW prorates. The use of VML estimated loads is achievable 
for an appropriate application but would be outside the comfort zone for many stakeholders in 
the near-term.  

(12) 
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Both the component and UBM method(s) were selected based on a thorough review of the S-92 
fatigue substantiation report. The entire list of S-92 aircraft dynamic components was evaluated 
and prioritized based on various quantitative and qualitative criteria, as described herein. The 
most appropriate UBM credit methodology was determined based on individual component 
details. Initially, all components with unlimited RT were eliminated from the list. Next, all 
attachment components—such as bolts, fasteners, and other components of low value or 
interest—were eliminated, resulting in high-value life limited candidate components for further 
consideration. The list of candidate components down-selected for more detailed assessment is 
provided in table 7. 

Life sensitivity analysis was performed on the down-selected candidates in order to understand 
each component’s life sensitivity to both usage and loads. Sensitivity metrics were calculated for 
each component, as discussed in the next section. 

Table 11. High-value, low-lifetime S-92 dynamic components 

Components 
Main rotor stationary swashplate 
Main gearbox housing 
Swashplate bearing retainer 
Damper piston rod 
Main rotor hub assembly 
Tail rotor torque tube/blade 
Tail rotor flexbeam 
Tail rotor horn assembly 
Tail gearbox housing 

3.1.1  Life Sensitivity Analysis 

A life sensitivity analysis Excel table was constructed from information extracted from an 
internal Sikorsky report. In this table, all pertinent information regarding the damage calculations 
of the candidate components was collected and organized in a manner that aided in conducting 
quantitative sensitivity analyses. Focusing mainly on usage monitoring applications, this 
information included several useful parameters for all candidate components. The approach used 
was similar to the life sensitivity analyses conducted for the UH-60M to support a component 
selection task under DO-1, as documented in Beale and Davis’ FAA report [2].  

Parameters that were required to perform the life sensitivity analysis include the list of damaging 
regimes and loads, calculated damage for any damaging regime, and CWC usage. Capturing the 
effects of each individual regime on component damage was essential in identifying potential 
“low-hanging fruit” regimes as initial usage monitoring candidates, as well as determining the 
overall sensitivity of lifetimes with usage. Because the life sensitivity table allows regimes to be 
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easily sorted on a number of categories and is set up for computational analysis, it was the 
primary tool for all sensitivity analyses.  

In order to investigate which of the components should be targeted for RT extensions, two 
metrics were defined and calculated: Life Sensitivity with Usage and Life Sensitivity with Load. 
These metrics, coupled with analyses of the component life as damage calculation parameters 
change can aid in quickly prioritizing where additional investigation into potential HUMS 
fatigue life benefits can be obtained. 

The sensitivity of the calculated lifetime to both the regime load and the usage at that load are 
defined as sensitivity factors. These parameters can be interpreted as the percent change in 
lifetime given a 1% change in load/usage. Using these parameters, all regimes can quickly be 
scanned to determine which might provide a larger benefit for small changes in usage when 
compared with others.  

The calculation of both sensitivity factors flows from a generalized derivation of component RT. 
Equation 13 shows this derivation begins with a typical formula that is often used to represent 
material or component fatigue (S-N) curves: 

𝑁𝑁 = � 𝛽𝛽

�𝑆𝑆𝐸𝐸�−1
�
1 𝛾𝛾⁄

In this formulation, S is the load, E is the endurance limit, N is the number of cycles to the 
initiation of a crack, and β and γ are material constants that are defined for each structural 
material. This curve shape can be used for the vast majority of materials considered in aircraft 
substantiations, including titanium, steel, aluminum, fiberglass, graphite, and most adhesives. 

The second step in the derivation is to invoke Miner’s rule of damage summation often used for 
metallic materials. This rule allows the damage from each regime to be calculated based on a 
single S-N curve, then linearly summed together to obtain a total damage. The part is assumed to 
reach the end of its useful life when this damage summation is equal to 1. Note that damage 
calculations presented herein use a baseline of 100 hours. This means that the number of cycles 
or occurrences provided in the CWC table of a damage calculation is really the number of 
cycles/occurrences per 100 flight hours. With this modification the calculated lifetime of a part 
can be calculated as in equation 14 below: 

𝐿𝐿 = 100
∑ 𝐷𝐷𝑖𝑖𝑖𝑖

Where L is the CRT and Di is damage for regime i. The damage for a single regime can be 
calculated from the generalized S-N curve shape as follows in equation 15: 

(13) 

(14) 
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In the first of these two formulations, ti is the number of seconds spent within a regime per 100 
flight hours, si is the regime load, and ω is the loading frequency (1/rev Main, 4/rev Tai, etc.). 
Note that the total number of cycles is divided by one million, as the S-N curve constants are 
derived with this scaling. The second formulation, which is used for transient maneuvers, 
calculates the number of seconds per 100 flight hours by multiplying the occurrences per 100 
flight hours (Oi) by the length of each occurrence (Li). 

The final step in the sensitivity calculation is to evaluate the derivative of the single regime 
damage with respect to both time per 100 hours (ti) and regime load (si). These are presented 
below in equations 16 and 17. 
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Two additional parameters, the Maximum Life Change % and Absolute Maximum Life Change 
(in hours), provide the potential life change if all damage associated with a given regime were 
taken away. When observing the sensitivity factors, it is essential to monitor the maximum 
benefit for a given regime as well, as some high-sensitivity regimes might be sensitive over small 
changes but may not provide benefit over a large range. 

A Pareto chart showing the output of the component life sensitivity to load analysis for each 
component is presented in figure 41. 

(15) 

(16) 

(17) 
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Figure 41. Component life sensitivity to load 

3.1.2  Component Selection 

The down-selection from the final list of candidate components to one component was 
performed by combining the results from the sensitivity analyses with independent qualitative 
feasibility and benefit scores provided by subject matter experts (SME). Four semi-qualitative 
metrics were developed to support the down-selection process, which are described below: 

• Feasibility of regime monitoring
- Based on a combination of the component regime sensitivity quantitative metrics 

and the feasibility of monitoring the components damaging regimes 
• Feasibility of load monitoring

- Based on a combination of the component load sensitivity quantitative metrics 
and the feasibility of monitoring the substantiating load for the component 

• Feasibility of serial number tracking
• Potential benefit of life extension

Each metric was scaled from 0–5, with 5 being the most favorable. A final score was developed 
for each component by summing all four metrics together for a total possible score of 20. This 
analysis resulted in a clear top 10 list of candidate components, which are listed in table 8, along 
with the total score. The final component selected was the stationary swashplate, which is the 
item that scored the highest in table 8. It is noted that the top two components are both assembled 
into the swashplate assembly but are separate components with different tracked RTs and, for the 
most part, are affected by the same core set of regimes. The third through fifth components are 
all in a similar load path and affected by the same set of regimes. Out of the 10 components 
listed, a small number of HUMS-based UBM credit strategies may cover the majority of the list. 
The process that is documented herein for the stationary swashplate will be applicable to many 
of these components, even to the degree that the monitored critical regimes are common among 
the components. The stationary swashplate scored the highest due to both high life sensitivity 
and SME-perceived feasibility of monitoring the usage in terms of flight regimes. The 
functionality of the stationary swashplate is described in detail in section 3.5.2.1. 
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Table 12. Top 10 component list 

Component 
Total 
Score 

Dominant 
Regimes Critical load UBM Approaches 

Stationary 
swashplate 18 

Turns (90%) 
Pullouts 
(10%) 

Servo load RR for turns/pullouts 
VML for servo load 

Stationary 
swashplate bearing 
retainer 

18 
GAG (7%) 
Turns (84%) 
Pullouts (9%) 

Servo load 
GAG counting 
RR for turns/pullouts 
VML for servo load 

MGB housing 
18 GAG (30%) 

LCF (69%) Foot stress 
GAG counting 
VML for stress LCF 
GW monitor 

MR hub 
17 GAG (38%) 

LCF (58%) MR torque 
GAG counting 
VML for LCF MRQ 
GW monitor 

MR shaft 
16 GAG (58%) 

LCF (42%) MR torque 
GAG counting 
VML for LCF MRQ 
GW monitor 

Rotating 
swashplate bearing 
retainer 15 

GAG (23%) 
Turns (59%) 
Pullouts 
(18%) 

MR push rod 

GAG counting 
RR for turns/pullouts 
VML for pushrod 
load 

MR servo assembly 

15 

GAG (24%) 
Turns (65%) 
Pullouts 
(12%) 

Servo load 
GAG counting 
RR for turns/pullouts 
VML for servo load 

TGB output 
housing 15 GAG (90%) 

LCF (9%) 
TGB output 
housing stress 

GAG counting 
VML for stress LCF 

MR blade 
15 GAG (97%) 

LCF (2%) 

Blade station 
21% corner spar 
strain 

GAG counting 
VML for stress 

MR shaft nut 
15 

GAG (78%) 
Pullouts 
(22%) 

MR shaft 
bending 

GAG counting 
RR for pullouts 
VML for bending 
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3.2  DEFINITION OF END-TO-END PROCESS 

An end-to-end process was mapped out and organized into components (presented in figure 42) 
that align with the sections in the FAA’s Advisory Circular (AC) 29-2C MG15 [10]. The end-to-
end process is mapped in terms of the flow of information, which starts with the onboard system 
(OBS), flows through the ground-based system (GBS), then into the rotorcraft OEM analysis 
environment where the data are stored, analyzed, and distilled into an actionable CRT 
adjustment. Customer maintenance records also are used to acquire component flight hours, 
aircraft installation history, and relevant maintenance repair history. The credit hazard and 
criticality analysis described in section 5 is performed in the context of this end-to-end process. 

Figure 42. End-to-end regime recognition credit process 
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3.3  CREDIT HAZARD AND CRITICALITY ANALYSIS 

The objective of the UBM credit in this study is to adjust the RT for a flight-critical, life-limited 
dynamic component while maintaining the baseline risk (or reliability) that was in place before 
usage monitoring was applied. The end-to-end HUMS UBM process (see figure 42) begins with 
the acquisition of airborne data and ends with the adjustment to the component cumulative flight 
hours via a usage credit. A Functional Hazard Assessment (FHA) was performed for this 
HUMS-based UBM credit as implemented through the entire end-to-end process. Because the 
end-to-end process spans multiple domains, providing different levels of functionality (e.g., 
OBS, GBS, OEM, and maintenance from figure 42), it is not practical to assign a single worst-
case hazard level to the entire process. Rather, criticality is assigned to the individual systems. 
The hazard analysis for each system is evaluated based on the function(s) executed by the 
system, although failure mode effects and criticality may be dependent on functionality 
implemented by other systems. For example, failure modes of the onboard HUMS system must 
be evaluated with consideration to how the OEM analysis process uses the HUMS data. Each 
failure mode is classified using the hazard criticality categories listed in table 9, which are 
extracted from a combination of AC 29-2C MG15 [10], SAE-ARP4761 [11], and DO-178B [12]. 

Table 13. Functional hazard criticality levels 

Failure Condition 
Category 

(Criticality) No Effect Minor Major 

Hazardous/ 
Severe-
Major Catastrophic 

Effect on rotorcraft No effect on 
operational 
capabilities 
or safety 

Slight 
reduction in 
functional 
capabilities 
or safety 
margins 

Significant 
reduction in 
functional 
capabilities 
or safety 
margin 

Large 
reduction in 
functional 
capabilities 
or safety 
margins 

Loss of 
rotorcraft 

Allowable 
probability per 
flight hour 

1.0 
(Frequent) 

10-3

(Reasonably 
probable) 

10-5

(Remote) 
10-7

(Extremely 
remote) 

10-9

(Extremely 
improbable) 

Required DO-178B 
software level E D C B A 

Before addressing the FHA for the HUMS UBM process, it is important to understand the 
relationship between a component RT and component criticality. RTs are assigned to 
components with fatigue failure modes that have nominally a 10-6 probability of failure within 
the design life of the aircraft. Fatigue failure modes of dynamic components are assigned 
criticality levels using Failure Modes, Effects, and Criticality Analysis (FMECA), which 
considers the merits of both the design and any compensating provisions—such as design 
redundancy or inspection or maintenance requirements—that can reduce the criticality of the 
failure modes. In the fatigue analysis of a dynamic component, a single RT is set based on the 
lowest individual RT for all fatigue failure modes, regardless of criticality.  
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Criticality for fatigue failure modes can be anywhere from minor to catastrophic. While the RT 
for a dynamic component is a means to ensure an extremely remote probability of failure, an RT 
does not eliminate or reduce the criticality of the associated failure mode. Likewise, an erroneous 
RT does not increase the criticality of the component failure mode established in the component 
FMECA; it only changes the risk or structural reliability of the component. In very rare 
circumstances, a gross error in the RT may increase the risk of failure to the point that failure 
may be reasonably probable during the life of the component. This type of error could occur if a 
very low strength part were assigned an erroneously long RT. In this case, a large reduction in 
structural reliability may exist, but the hazard criticality associated with the HUMS monitoring 
system cannot be more severe than the component failure mode criticality. On the other hand, 
small errors in the RT cannot significantly affect the risk of failure and therefore present no 
hazard to the rotorcraft. Most failure modes for a generic UBM process will fall somewhere in 
between these two extremes. By ensuring that gross errors are not possible, certain attributes 
(e.g., credit cap, rigorous data validation, or use of pilot reported flight hours) of a UBM process 
can be imposed, as appropriate for specific credits, to limit the severity of an erroneous RT. In 
these cases, the worst case effect of a large reduction in structural reliability may be claimed, 
which results in the Hazardous/Severe-Major failure condition shown in table 9. As an example, 
an RT credit is inherently limiting because it can only give back a percentage of the RT. 

For reasons described above, criticality is dependent on the component and UBM process details 
and must be evaluated for each HUMS application. The AC 29-2C MG15 [10] explicitly does 
not address applications with a corresponding failure category of catastrophic; however, it does 
state in paragraph f.(1)(i)(A) that: 

The intended application can range from systems that acquire data for proof of 
concept only to a system that acquires and processes data to determine if a life-
limited part should be replaced. This range of applications will have a 
corresponding range of criticality for the systems from No Effect to 
Hazardous/Severe-Major.  

The UBM credit application described herein falls into the expected range of applications 
covered by the AC. 

The FHA for the HUMS UBM process documented herein is approached by providing a 
functional description of the end-to-end process, review of the existing FMECA for the target 
component (stationary swashplate), and FMECA assessment for the HUMS UBM end-to-end 
process for each of the four domains of the process (i.e., OBS, GBS, OEM, and Maintenance). 
The assessment for each potential failure mode in the HUMS UBM process includes a 
description of worst-case failure effect at the aircraft level and resulting criticality. In general, 
failures can be described as loss of functionality, erroneous/misleading functionality, or 
degradation of the function. Each possible failure has an associated worst-case effect on the 
rotorcraft system as classified in the failure condition categories listed in table 9. The following 
steps provide a general framework for conducting a hazard analysis for a HUMS UBM process. 
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1. Review/conduct FMECA of target component:

a. Identify component failure modes that are managed by maintenance protocols that
are affected by the UBM credit (e.g., RT).

b. Review/analyze component failure mode effects and hazard level after mitigation,
which may include design features (e.g., redundancies and damage tolerance)
and/or maintenance actions (e.g., inspections) to achieve desired/acceptable
component and/or subsystem hazard level.

2. Conduct FMECA of UBM credit process:

a. Identify UBM process failure modes.
b. Analyze UBM process failure mode effects in the context of relevant component

failure mode effects and UBM process details.
c. Analyze UBM process hazard level, assuming that component

design/maintenance mitigations still apply except for those that are to be
managed, modified, or replaced by the UBM credit.

d. Determine whether HUMS onboard and ground-based software Design Assurance
Level (DAL) is commensurate with UBM credit process hazard level.

e. If not, investigate whether UBM credit process changes or other mitigating
actions can be used to reduce determined hazard level associated with the UBM
credit process.

3.3.1  Functional Description 

The end-to-end mock UBM credit process will accumulate time and number of occurrences for 
defined flight regimes to account for all ground/flight operations. This HUMS UBM process 
requires the aircraft parametric data recorded from various onboard sensors and the sequence of 
identified regimes resulting from the onboard RR algorithm processing of these state parameters. 
Both the parametric data and regime sequences are sealed with an error-checking protocol and 
written to a data card by the onboard Data Transfer Unit (DTU). The data are transferred to the 
rotorcraft OEM for evaluation of helicopter usage and calculation of accumulated fatigue 
damage and UBM flight-hour credit. Regime and parametric data are analyzed by the OEM to 
independently assure data quality and then used to assign time and occurrences of select critical 
CWC regimes to each tail number and/or component serial number. The time and occurrences of 
select critical CWC regimes are then used to calculate usage-based flight-hour credits for 
specific serial number components based on a conservative calculation of cumulative fatigue 
using reliability factors. Usage-based flight-hour credits are applied to the component log card by 
adjusting the “total time since new” for a given serial number. 

3.3.2  Component FMECA 

The S-92 aircraft swashplate is a flight-critical component with multiple failure modes of various 
levels of criticality. The swashplate was designed with significant inherent load carrying 
redundancy to reduce the immediate consequences of initial degradation of the component. 
Further, the RT is established for fatigue failure modes that are a function of usage and loads. 
The component has other failure modes that are not as deterministic in nature. Therefore, specific 
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maintenance actions (e.g., daily inspections and RT removal) and dedicated bearing monitoring 
have been employed to ensure that swashplate degradation is detected before failure. The 
swashplate is an assembly of the rotating and stationary swashplate subassemblies that are joined 
through a duplex bearing. Each of these components has its own failure modes and associated 
RTs. The fatigue failure modes of the stationary swashplate range in severity from major to 
catastrophic; however, all catastrophic failure modes have been analyzed previously to meet the 
requirements for an unlimited RT. The worst-case failure mode associated with the limiting RT 
of the stationary swashplate has a criticality of Hazardous/Severe-Major. 

3.3.3  HUMS UBM FMECA 

The FMECA for the HUMS UBM process is listed below and organized into the OBS, GBS, 
OEM analysis, and Maintenance domain, as presented in figure 42. 

3.3.3.1  OBS Failure Modes 

1. Potential failure mode: Complete loss of HUMS airborne system functionality.

a. Worst-case failure effect: Loss of the airborne system functionality results in gaps
in the usage history for a particular aircraft. These gaps are identified during OEM
analysis by comparing the calculated HUMS flight hours to operator-logged flight
hours. The difference between operator-logged flight hours and calculated HUMS
flight hours can be caused by a number of things, such as HUMS not installed or
being non-functional, data loss, data corruption, or conservative estimation of
flight hours by pilots/operators. Gaps are treated conservatively to cover any
possible sources of error that are due to system/process failures by assigning the
worst-case damage rate during the period of time not covered by HUMS data.

b. Failure condition category (criticality): No effect.

2. Potential failure mode: Erroneous sensor data detected.

a. Worst-case failure effect: Sensor failures are detected and flagged onboard,
resulting in invalid regime data that are flagged and treated in this mock UBM
credit application as a complete loss of HUMS airborne system functionality.

b. Failure condition category (criticality): No effect.

3. Potential failure mode: Erroneous sensor data undetected.

a. Worst-case failure effect: It is possible to erroneously record and process sensor
data that the airborne system uses to calculate regimes. Most sensors used by the
HUMS RR algorithms deployed on the S-92 aircraft are also used by the aircraft
flight control system and, as such, sensors are redundant—which provides
detection capability. However, there is one sensor (an accelerometer that
measures aircraft load factor) that is used only by HUMS RR algorithms. Any
sensor anomalous data patterns not caught and rectified by the operator are
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expected to be detected during OEM data integrity analysis shown in the end-to-
end UBM process (see figure 42). SAC has developed comprehensive data 
integrity algorithms to automatically identify known sensor failure characteristics 
and resultant anomalies in usage patterns. However, it may still be possible for 
sensor faults (subtle changes in calibration) and resultant errors in regime 
sequences identified onboard to remain undetected and be propagated into the 
OEM analysis of the helicopter usage data. Short duration sensor faults (less than 
a few flight hours) not detected onboard are more difficult to detect by the OEM 
analysis but would have a negligible effect on the Fatigue Usage Spectrum 
metrics. Long duration sensor faults (greater than 100 flight hours) not detected 
onboard are more easily detected by OEM analysis.  If left undetected, they would 
have a significant effect on the resulting recommended adjustments to the 
component flight hours or RT. If this error is then in the unconservative direction, 
it can result in a component being left on the helicopter longer than the 
appropriate RT. If this error is also significant in magnitude, and still undetected, 
the erroneous UBM credit can result in a large reduction in structural reliability or 
safety margins. 

b. Failure condition category (criticality): Hazardous/severe-major.

4. Potential failure mode: Erroneous onboard calculation of regimes.

a. Worst-case failure effect: The erroneous calculation of regimes in the OBS can
only have a significant effect on the resulting life credit if the erroneous
calculations occur on a sustained systemic basis for many hundreds or thousands
of flight hours. Such systemic errors are unlikely given RR algorithm validation
and software qualification. In the unlikely event that a software error did occur,
such a significant systemic error in calculated regimes would likely result in odd
regime usage patterns for the fleet or a particular aircraft that could be easily
detected during OEM analysis as well as fleet and aircraft usage audits.
Parametric data can then be used to assess the validity of onboard regime
sequences. Detected systemic errors in onboard regime sequences would be
mitigated through the elimination of suspicious usage data and its replacement
with worst-case damage rate assumptions. However, undetected errors in the
calculated regimes could result in large reductions in structural reliability or
safety margins.

b. Failure condition category (Criticality): Hazardous/severe-major.
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3.3.3.2  Ground-Based System 

1. Potential failure mode: HUMS data are not transferred to OEM (i.e., loss of data).

a. Worst-case failure effect: HUMS data are expected to be transferred to the OEM
on a regular basis to aggregate usage statics over the cumulative life of an
airframe and calculate component UBM credits. An audit to identify missing data
is part of the UBM process. Missing HUMS data are detected and dealt with as
described in Potential Failure Mode 1.1.

b. Failure condition category (Criticality): No effect.

2. Potential failure mode: Corruption of HUMS data during transfer from OBS to OEM
server.

a. Worst-case failure effect: Data corrupted during the transfer to the OEM are
extremely unlikely to be corrupted in a way that is undetectable by state-of-the-art
data integrity checks. Data recorded onboard the HUMS system include
encapsulated error bits based on established error-checking protocol (e.g.,
Checksum or CRCs). These data are then transmitted to the OEM through a
multistep process. First, the onboard HUMS data are transferred to a Personal
Computer Memory Card International Association (PCMCIA) card by the
onboard DTU. Then, the PCMCIA card is hand-carried from the aircraft to the
operator ground station and uploaded to a HUMS ground station. Next, the data
are transferred via a local network to an operator server. Lastly, the data are
transferred over the Internet via File Transfer Protocol (FTP) to an OEM server,
where it is written to a hard drive. The error-checking protocol is then conducted
by the OEM to validate the integrity of the data as recorded by the OBS. Any
error bit failure results in categorization of the associated packet as invalid. Any
parametric and usage data corruption detected is addressed in the same manner as
loss of data (Potential Failure Modes 1.1 and 1.2).

b. Failure condition category (criticality): No effect.

3.3.3.3  OEM Analysis 

1. Potential failure mode: Erroneous analysis of component usage, calculated fatigue
damage accumulation, and UBM credit from HUMS data.

a. Worst-case failure effect: Analysis of component life using HUMS data must
follow an FAA-approved methodology or process that is submitted as part of the
aircraft design certification package. This analysis is carried out by SME
engineers using the same analytical software tools, standard work, and
engineering reviews and approvals used to calculate the original component life.
Results of this analysis are documented in technical reports that are then subject
to an engineering review and approval process. The calculation of UBM credits is
subject to even greater rigor as a result of the process established as part of the
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end-to-end UBM credit process to monitor usage trends for individual aircraft, 
operator fleets, and the total S-92 fleet. Detection of unusual usage patterns or 
UBM credit results that are inconsistent with usage statistics will trigger further 
SME audit and analysis. UBM credit approval is contingent on the 
aforementioned engineering checks, balances, and audits being passed. If an 
unlikely analysis error passes through undetected, it could produce erroneous 
UBM credits that may result in large reductions in structural reliability or safety 
margins. 

b. Failure condition category (criticality): Hazardous/severe-major.

3.3.3.4  Maintenance 

1. Potential failure mode: Erroneous maintenance data provided by operator.

a. Worst-case failure effect: The worst case failure scenario is for the operator to
provide an erroneous component log card that underrepresents the component
flight-hour history. This failure mode is not unique to the HUMS UBM process,
as this would be a risk to any component in the field not managed by a HUMS
UBM process. The risk is reduced by the UBM process because any significant
discrepancy between HUMS recorded and operator-recorded flight hours triggers
an audit. Differences must be reconciled before a UBM credit will be granted.

b. Failure condition category (Criticality): No effect.

3.3.4  FHA Summary 

The above assessment of eight potential failure modes for the specific mock UBM credit 
application yields the worst-case criticality of the end-to-end process of Hazardous/severe-major. 
However, as stated previously, it is more useful to assign criticality to each domain of the 
process as this has further implications for software certification requirements. By assigning 
criticality based solely on the functions provided by each domain, the results of the FHA are 
shown in table 10. 

Table 14. UBM process FHA results 

UBM Process Domain Worst Case Criticality Software DAL 
Onboard system Hazardous/severe-major DAL-B 
Ground-based system No effect DAL-E  
OEM Hazardous/severe-major N/A (see Section 3) 
Maintenance No effect N/A (No S/W) 
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It is recommended that the onboard software for parametric data acquisition and RR be designed 
and qualified/certified to DAL-B for this mock HUMS UBM process. The ground station can be 
designed to DAL-E or any good software development standards, as it is used only for data pass 
through in this end-to-end mock UBM credit process. OEM data assessments and calculations 
can be performed using the same methods and software tools used for aircraft design and lifing 
certification. The S-92 aircraft has an integrated HUMS that was certified to DAL-B. If the 
HUMS were less than DAL-B, other mitigating actions not employed in the end-to-end process 
defined herein may be required. Potential mitigating actions include implementing a UBM credit 
cap or limiting the number of UBM credits that can be applied to a given component over its life. 

3.4  INSTALLATION QUALIFICATION 

Installation qualification addresses approval of systems and equipment that acquire, store, 
process, and display HUMS data. The degree of qualification of the installed equipment is 
commensurate with the hazard level assigned in the functional hazard and criticality analysis. 
However, some elements of the end-to-end process described in figure 42 are not allocated to the 
installed HUMS equipment, as they are performed through OEM data analysis. This presents a 
challenge in understanding certification requirements for a credit process that is not entirely 
contained within the installed HUMS equipment. Certification requirements for these two 
domains are addressed in Sections 3.4.1.1 and 3.4.1.2. 

3.4.1  Installed HUMS Equipment 

3.4.1.1  Airborne Equipment 

The S-92A installed HUMS equipment consists of an onboard main processing unit (MPU), 
DTU, data transfer card, and ground-based Ground Support System (GSS) computer. The MPU 
acquires, processes, and stores data from a host of systems as well as dedicated HUMS and 
shared sensors (refer to figure 43 for an overview of the system and its interfaces). Flight 
regimes are calculated within the MPU using a set of parameters that originate from multiple 
aircraft systems. Each parameter is fault-detected and validated by the source computer prior to 
sending data to HUMS. Along with parameter values, the data validity bit is received by HUMS, 
which indicates whether the parameter value is valid or invalid. An invalid bit can indicate that 
the sensor failed or the source computer is not functional—among other possible issues. When 
any parameter required to perform RR is invalid, HUMS declares the regime as “Undetermined.” 
The raw parametric data, validity bits, and regime classification data are transferred from the 
MPU onto a data card using the DTU located in the right-hand avionics rack. These data are 
written onto the data card as a data packet and stored with an error-checking protocol.  

The airborne HUMS system and accompanying GSS have previously been FAA-approved as a 
usage data recording, display, and archiving system. The approval for DAL “B” for both 
airborne software and hardware is commensurate with the intent to use HUMS parametric and 
regime data for component RT adjustments, including the mock UBM credit documented herein. 
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Figure 43. S-92 HUMS system overview 

3.4.1.2  HUMS Ground-Based Equipment 

The data stored on the data card are transferred to the operator-maintained GSS computer, where 
the operator can view, but not manipulate, usage data stored on the GSS. The data are then 
transferred to the operator server, via local area network, where it is stored in a data repository. 
Finally, the data are transferred to the OEM server over the Internet via FTP. Note that the S-92 
aircraft sales agreement requires  that the customer provide SAC with all HUMS data. Most 
operators use an automated script provided by SAC for doing this on a regular basis, typically 
once or twice a day for larger operators. 

When determining qualification requirements for subsystem components, consideration is given 
to functional allocation among the various components of the UBM process. This means that the 
criticality level for a given subsystem or hardware component is based on the functional hazards 
that the subsystem or hardware component presents to the end-to-end process. Based on the 
credit hazard assessment in section 4, there is no functionality in the HUMS GSS that presents a 
functional hazard to the end-to-end mock UBM credit process. Therefore, there are no additional 
requirements for the certification HUMS GSS beyond that used to certify the overall HUMS 
onboard and GSS system. At that time, the AC 29-2C MG-15 direct evidence methodology was 
utilized to validate the use of the GSS as a device for uploading and displaying usage data from 
the PCMCIA card. For the mock UBM credit process, the GSS is only used to upload the data 
and transfer it to an operator server, which in turn transmits it to the OEM server.  
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3.4.2  OEM Analysis 

The AC explicitly provides qualification guidance for HUMS airborne and ground-based 
equipment. Qualification requirements that apply to installed equipment serve to provide a level 
of integrity commensurate with the defined hazard criticality to ensure that hardware and 
software deployed in the field will operate and carry out processes reliably and autonomously 
without reliance on human supervision. Not addressed in these guidelines, however, are elements 
of an end-to-end process not hosted by the HUMS airborne or ground-based equipment. The 
end-to-end process for the mock HUMS credit application defined herein extends back to the 
rotorcraft OEM, which processes the usage data and calculates the UBM credit. This process 
leverages data generated from previously qualified HUMS equipment and involves engineering 
analysis of HUMS data to arrive at a maintenance intervention action. This part of the process is 
labeled “OEM Analysis” in figure 42. It is conceivable that many near-term HUMS credit 
applications will have process elements that are not entirely contained within the installed 
HUMS equipment. 

Many of the engineering analysis software tools used in this domain are not unique to the HUMS 
credit application but are the same or similar engineering analysis tools used in the original 
establishment of component RTs. Examples of the most common analysis tools include 
MATLAB® scripts or functions, Microsoft Excel spreadsheets, and custom-developed structural 
analysis tools and/or RT calculators. A common element among all of these tools is that they are 
non-autonomous and employed by SMEs in an engineering support role. The certification burden 
for this aspect of the credit process should not be focused on the specific software support tools 
used but rather on the procedures and methodologies employed for calculating component life 
and RT (such as an FAA-approved fatigue methodology report), resulting analysis reports and 
documents, and oversight/review processes. The specific procedures that modify or add to 
already approved fatigue methodology procedures and are used to arrive at component RT 
adjustments using HUMS data are subject to the credit validation guidelines of the AC. The 
results of engineering analyses that are the basis of HUMS-based component UBM credits will 
be published in a technical report and subject to an independent technical review process before 
being further reviewed and approved by airworthiness authorities. The UBM credit process uses 
the existing, approved procedures and technical review and approval processes already in place 
to ensure the highest level of process integrity in an engineering environment where safety 
critical decisions are made routinely. There is no need to impose additional qualification 
requirements on the OEM analysis, review, and approval procedures. 

3.5  CREDIT VALIDATION 

The AC describes the key requirements for credit validation as follows: 

• Description of application and associated credit
• Demonstration that the physics involved is well understood
• Validation methodology
• Controlled introduction to service
• Continued airworthiness and synthesis of credit
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This section follows the format above as much as possible in order to directly address the 
guidelines in the AC.  

3.5.1  Description of Application and Associated Credit 

The stationary swashplate on the S-92 aircraft has a published RT of 14,000 hours. This RT is 
predicated on operation of the helicopter within all flight and maintenance parameters, as 
required by current manuals and applicable Federal Aviation Regulations. As the replacement 
time is not predicated on any specific monitored usage profile, a CWC usage spectrum is 
assumed in the analysis of the component failure times. This CWC spectrum assumption is one 
piece of a larger fatigue life methodology that achieves a reliability goal of six- 9s for individual 
fatigue failure modes in the rotorcraft. 

The intent of the HUMS application and associated mock UBM credit is to use RR technology to 
count occurrences and/or duration of key damaging flight regimes, determine the percent of 
fatigue life consumed for the stationary swashplate, and calculate a usage credit that adjusts the 
cumulative flight hours of the installed serial number component. The mock UBM credit 
application described herein does not change the published RT of the component. It is not limited 
in the number of times a component may be evaluated for usage credit or by a cap in the life 
credit amount. The credit hazard and criticality analysis for this application is described in 
Section 4. 

3.5.2  Physics of the Application 

3.5.2.1  Stationary Swashplate Fatigue Analysis 

The S-92 MR swashplate assembly consists of an inner stationary swashplate assembly and an 
outer rotating swashplate assembly, as shown in figure 44. The stationary and rotating 
swashplates are interfaced by a duplex bearing assembly that allows for rotation of the outer 
assembly, which is directly connected to the four-blade pitch control rods. The stationary 
swashplate transfers collective and cyclic MR blade pitch commands from three flight control 
servos that are mounted to both the main gearbox and stationary swashplate. Collective pitch 
moves the swashplate vertically along a swashplate guide and cyclic pitch controls the angle and 
direction of the swashplate tilt. The combined collective and cyclic pitch of the swashplate 
controls the MR blade pitch around the rotor azimuth. Aerodynamic blade pitch moments are 
translated to the pitch control rods, down though the swashplate, and reacted by the servos.  
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Figure 44. S-92 main rotor swashplate 

During the S-92 aircraft development phase, multiple stationary swashplate specimens were 
fatigue-tested in a specialized rig that allows for controlled test loads to be applied to servo 
attachment regions and reacted by the four-pitch control rods. While only two fatigue failure 
modes were generated from this test program, multiple potential failure modes were considered 
in the RT analysis based on known high-stress regions. In total, six fatigue failure modes were 
considered in the RT analysis, as listed in table 11. As shown in this table, the life-limiting mode 
for the stationary swashplate is at the servo trunnion attachment hole, with a CRT of 14,000 
hours. 
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Table 15. Stationary swashplate fatigue failure modes 

Component Region Fatigue Mode 
Damage Rate  

(per 100 hours) 

Calculated 
Retirement 

Time (hours) 
MR servo trunnion 
attachment region 

Trunnion attachment 
hole, chafing 0.0073 14,000 

Potential, non-chafing 0.0009 120,000 
Uniball bore region Potential, chafing 0.0062 16,000 

Uniball bore, non-
chafing 0.002 50,000 

Stationary scissors 
attachment region Potential, chafing 0 Infinite 

Potential, non-chafing 0 Infinite 

It is important to note that the servo trunnion attachment hole is not the only life-limiting fatigue 
mode for the stationary swashplate. The uniball bore region is also fatigue life-limited to 16,000 
flight hours. In this case, both the servo trunnion mode and uniball bore mode are sensitive to the 
same set of flight regimes, which means that they will always trend together in terms of changes 
in life due to changes in usage. In other words, the uniball mode cannot be more life-limiting 
than the trunnion mode, given only a change in the usage spectrum. Detailed results for the 
uniball mode are not addressed in this report but would need to be verified in a formal 
certification analysis. 

The fatigue test program described above does not solely determine the RT for a component. The 
key output of the fatigue test program is an S-N curve for each of the evaluated fatigue modes. 
This curve defines the expected cycles-to-failure for a continuously applied load at given 
vibratory amplitude. A notional example of such an S-N curve is shown in figure 45. In this 
figure, a “mean strength curve” is fit to the full-scale test data, which represent the true strength 
of the fatigue mode. A “working curve” defined from material-specific reliability factors is used 
when calculating fatigue damage and comparing against flight loads. Figure 45 also shows how 
flight loads are compared against the fatigue strength. Three reference lines are shown, 
representing the maximum flight test fatigue load for GAG (maximum GAG load cycle), 
maximum load of all in-flight maneuvers, and maximum load for all LF conditions. These 
reference lines indicate roughly which maneuvers are critical in the fatigue analysis. For 
example, the maximum LF load from all flight test data is below the endurance limit and non-
damaging, which means that LF does not contribute to the fatigue damage of this component. On 
the other hand, GAG and at least one maneuver have the potential to contribute to fatigue 
damage. 
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Figure 45. Sample S-N curve for stationary swashplate 

The fatigue damage rate for each regime is established through analysis of the flight test loads 
associated with each regime in relationship to the S-N working curve. Once the list of potentially 
damaging regimes is established, a regime damage rate is computed using the regime 
occurrence/duration metrics contained in the CWC usage spectrum. The damage rates for all 
damaging regimes are summed together to arrive at a total fatigue damage rate for the 
component fatigue mode. A simplified summary of the final RT calculation for the life-limiting 
mode of the stationary swashplate is shown in table 12. 
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Table 16. Damage calculation summary for stationary swashplate life-limiting mode 

Reg Regime Name Regime Type Damage/100 Hr 
18 LT TRN 45 VNE Steady state 0.0023 
20 RT TRN 45 VNE Steady state 0.0023 
25 DIVE 1.1 VNE Steady state 0.0000 
26 E&R DIVE 1.1 VNE Transient 0.0000 
47 LONG REV LF VNE Transient 0.0000 
51 COLL REV LF VNE Transient 0.0000 
54 E&R LT TRN 30 & 45 VNE Transient 0.0007 
55 E&R RT TRN 30 & 45 VNE Transient 0.0006 
57 SYM PULLOUT MOD VNE Transient 0.0000 
58 SYM PULLOUT SEV VNE Transient 0.0000 

59 
SYM PULLOUT MOD 0.8 
VNE Transient 0.0007 

60 
SYM PULLOUT SEV 0.8 
VNE Transient 0.0000 

61 SYM PUSHOVER VNE Transient 0.0000 
62 SYM PUSHOVER 0.8 VNE Transient 0.0000 
72 GAG Quasi-static 0.0006 

102 
COL REV LF 0.8 VNE - 
CARGO Transient 0.0000 

105 E&R PPD - CARGO Transient 0.0000 
Total Damage/100Hr = 0.0073 

Highlighted = Critical regime Calculated Retirement Time 
= 14,000 
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The most critical regimes that contribute the most to the fatigue damage are determined from 
fatigue damage calculation tables based on a combination of the level of potential damage that 
the maneuver can induce, and maneuver rate of occurrence or percent time. The results for the 
stationary swashplate are presented in figure 46, where the percent contribution to the total 
damage rate for each of the damaging regimes are plotted in descending order of contribution. 
While there are a total of 17 regimes that have the potential to cause fatigue damage, 98% of the 
fatigue damage that produces a 14,000-hour RT is attributed to six critical regimes.  

One key feature of the UBM credit approach described herein is that it is not necessary to 
monitor all damaging regimes for a particular component. Practical considerations for 
determining which regimes to monitor include the ability or inability to accurately detect various 
regimes with RR and their relative contribution to fatigue damage and resultant RT. It is always 
assumed that the CWC usage spectrum is conservative for any particular regime and, therefore, 
the CWC damage rate is attributed to any non-monitored regimes. The mock UBM credit 
approach for the stationary swashplate is to monitor only the top six critical damaging regimes 
with RR, while allocating CWC damage rates to the bottom 11 regimes. The specific calculations 
used for calculating fatigue damage for monitored and unmonitored regimes will be shown later 
in the context of calculating the usage credit for a specific serial number component. In this 
particular case, if the top six damaging regimes were removed from the analysis, the residual 
damage induced by the remaining 11 regimes with their CWC usage assumptions would be small 
enough to eliminate the stationary swashplate RT associated with this failure mode. In reality, 
most of the top six regimes will occur at some non-zero usage rate. Although the actual usage 
rate on an individual tail number, which is monitored on a regular basis, can be significantly 
lower than the CWC usage spectrum. This difference can either be due to large variations in the 
maneuver usage rate across the fleet or a large disparity between the usage spectrum and the 
actual fleet’s worst-case metrics. In either case, the application described herein can take full 
advantage of this difference in actual versus assumed usage. It is noted, however, that where the 
latter case dominates, significant HUMS benefit could be achieved through a CWC spectrum 
update that results in new replacement times for the entire fleet—also termed a part-number 
credit—which is not the focus of the mock UBM credit application. 
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Figure 46. Stationary swashplate damage regimes 

3.5.2.2  Regime Recognition Monitoring Technique 

The key to the HUMS RR monitoring technique used for the current mock UBM credit is to 
reliably and accurately track the most damaging usage spectrum regimes that drive the stationary 
swashplate life analysis. The S-92 aircraft usage spectrum assumptions for the top six damaging 
regimes are listed in table 13. Within these six regimes, there are three types of maneuvers: 
steady state, transient, and quasi-static. Steady state regimes, such as LF or hover, are quantified 
in terms of percent time because the applied fatigue load within a single occurrence is fairly 
constant, and the accrued fatigue cycles are based on the total time spent in the maneuver. On the 
other hand, transient regimes such as symmetric pullouts are quantified in terms of occurrences 
because the transient nature of the maneuver typically causes a single peak fatigue load at some 
point during the maneuver. Because transient regimes are typically very short duration events, it 
is difficult to characterize them by duration when there is rarely a distinct start and end to the 
maneuver. In both steady state and transient regimes, the usage metric is converted to a fatigue 
cycle rate based on standard assumptions, such as the predominant load frequency, in the fatigue 
analysis. The quasi-static GAG regime is a single fatigue load cycle that occurs over an 
indeterminate duration and is caused by the maximum and minimum peak loads that occur across 
a flight. While RR tracks the in-flight steady state and transient maneuvers, GAG events are 
counted by the OBS by using the WOW parameter to track landing/takeoff cycles. 
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Table 17. Stationary swashplate critical regime usage 

Regime Name Regime Type 
CWC Usage 

Rate Units 
Left turn, 45° VNE Steady state maneuver 0.15 Percent time 
Right turn, 45° VNE Steady state maneuver 0.15 Percent time 
Entry/recovery left turn 
30° & 45° VNE Transient maneuver 95 Occurrences 

per 100 hours 
Entry/recovery right 
turn 30° & 45° VNE Transient maneuver 95 Occurrences 

per 100 hours 
Symmetric pullout, 
moderate, 0.8 VNE Transient maneuver 90 Occurrences 

per 100 hours 

GAG Quasi-static event 450 Occurrences 
per 100 hours 

The RR clustering/prorating approach described in Section 2.1 is applied in order to reliably 
track these critical regimes. The regimes that result from the clustering/prorating process are 
directly aligned with the S-92 aircraft usage spectrum for turns, pullouts, and pushovers and can 
then be used to track the usage within the context of the usage spectrum. Figure 47 shows a 
single occurrence of a 22-second duration, 45° right turn at VNE airspeed that was accurately 
captured in the validation flight test data after the application of the clustering/prorating method. 
To track fleet usage against the usage spectrum, this single turn occurrence counts as 22 seconds 
against the right turn, 45° VNE steady state regime as well as two occurrences of the 
entry/recovery (E&R) right turn 30° & 45° VNE transient regime.  

The single turn contributes two occurrences to the transient regime because the turn contains 
both an entry and a recovery event on either side of the turn. Because HUMS RR does not 
explicitly detect the transient E&R portion of the turn, the total HUMS RR time of 22 seconds 
includes a portion of these events. A simplifying conservative assumption in the fleet analysis is 
to count the entire 22 seconds against the steady state turn regime. While this assumption is very 
conservative, it eliminates the need for a more rigorous methodology to explicitly capture the 
beginning and end points of the entry, steady state, and recovery segments of a turn. Another 
example is shown in figure 48 for a moderate pullout at 130 knots. In this case, HUMS RR, with 
the clustering/prorating post-processing method, detected a moderate pullout, 0.8 VNE, which is 
the correct airspeed prorated for the maneuver. This maneuver contributes one occurrence to the 
symmetric pullout, moderate 0.8 VNE regime in the usage spectrum. While the duration of five 
seconds is captured, for reasons discussed earlier, duration is not necessary to monitor the usage 
for this regime.  
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Figure 47. Regime recognition of right turn, 45° VNE 
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Figure 48. Regime recognition of moderate pullout, 0.8 VNE 

3.5.2.3  Data Quality Assessment 

Data quality assessment is a necessary step to eliminate data quality issues from the usage 
analysis results that are used to determine HUMS-based UBM credits. The presence of data 
quality issues in the HUMS system does not reflect poorly on the integrity of the HUMS system. 
In fact, most of the data quality issues are detected and mitigated by the HUMS system before 
the data are transferred offboard. These issues are inevitable given the massive amount of HUMS 
data generated by the S-92 rotorcraft fleet every day and accumulated over years of operation.  

For the successful assessment of data quality, it is important to understand all the types of quality 
issues that are present in the data set. Even though most of these issues are dealt with onboard, 
they have to be specifically removed from analysis off board. Further, it is not expected that all 
data quality issues can be conceived of during the initial development of the OBS. Therefore, it 
is necessary to continue to monitor and assess fleet data in order to gain a deeper understanding 
of the quality issues that remain in the fleet database so they can be filtered out from the usage 
analysis. Table 14 contains a listing of types of data quality issues and a description of how and 
where these issues are detected and handled in the end-to-end process. Pervasive issues are 
flagged for engineering analysis, correction, and/or disposition before a specific UBM credit is 
considered and approved. 
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Table 18. HUMS usage data quality issues 

Quality Issue 
Potential 
Cause(s) Detection Method(s) Corrective Action 

Unrecognized 
maneuver 

Aircraft 
maneuver state 
not mapping to 
a preconfigured 
regime 

Onboard HUMS checks input data 
against preconfigured regime list to 
determine the current regime. 
Unrecognized maneuvers cannot be 
mapped to a regime. 

RR classifies the regime as 
“Unrecognized” when the 
parametric state data cannot 
map to a regime. 

Missing sensor 
data 

Sensor source 
computer not 
functioning or 
not installed 

Onboard HUMS continuously 
verifies that all necessary RR signals 
are received by the source avionics 
system. 

RR classifies the regime as 
“Undetermined” when one 
or more required RR 
parameters are either 
unavailable or declared 
invalid by the source 
avionics system. 

Erroneous 
sensor data 

Degradation of 
sensor 
performance 

Detected onboard: 
The sensor source avionics system 
performs validity tests. Some 
redundant systems can isolate faults 
and continue to provide valid data 
with minimal impact to HUMS. Other 
systems will declare the sensor data 
as invalid. Signal validity checks are 
continuously provided to HUMS by 
the source computer. 

Detected offboard: 
Sensor quality issues not detected 
onboard can be detected offboard. 
Errors are identified through 
engineering analysis of sensor data 
relative to expected trends. Validation 
tests are developed based on known 
erroneous behavior. 

Validation tests are 
performed on RR 
parameters for each flight 
data file. Test failures are 
mitigated by setting a flag 
during the failed period or 
by removing the entire 
flight data file from the 
analysis. 

Incomplete 
data 

Not following 
the proper 
procedure to 
remove the 
HUMS data 
card 

Parametric data are checked to verify 
each HUMS data file starts and ends 
with the aircraft on the ground. 

Depending on the 
application, incomplete data 
may or may not affect 
results. For this application, 
proper GAG analysis 
requires complete HUMS 
data. Incomplete data are 
flagged and removed from 
analysis during offboard 
usage processing. 
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3.5.2.4  S-92 Rotorcraft Fleet Regime Usage Results 

The regime clustering analysis was performed on the entire S-92 rotorcraft fleet for all usage 
data captured in 2013. Note that this assessment is not required for the mock UBM credit 
application but was conducted to assess fleet usage statistics relevant to the mock credit and to 
select a representative aircraft that would result in significant usage credit benefit. In total, 
127,324 flight hours from 200 aircraft tail numbers were extracted from the HUMS database for 
this regime usage study. Figure 49 shows the total 2013 HUMS flight hours in descending order 
by tail number. High utilization aircraft flew about 2,000 flight hours in 2013, which is 
equivalent to roughly 5.5 flight hours per day. The average utilization in 2013 for aircraft 
delivered prior to 2013 was 818 hours, or 2.2 hours per day. Also shown in figure 49 are the total 
operator-logged flight hours since inception for each aircraft. It is noted here that several high-
utilization aircraft have flown over 14,000 hours, which is the RT of the stationary swashplate. 

Figure 49. Total 2013 HUMS flight hours by tail number 

The data integrity assessment described in Section 3.5.2.3 was performed on the 2013 HUMS 
data and results are shown in figure 50. In total, only 3% of the 2013 fleet usage data was filtered 
out for having fallen into one of the four categories above. Note in this figure that both onboard 
detected erroneous sensor data and missing data were categorized as “Undetermined.” It is 
possible to determine the causes of Undetermined through further processing of parametric data; 
however, that analysis was not carried out under this project. The offboard erroneous sensor data 
detections are noted in the legend with “OB.”  
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Figure 50. HUMS data integrity assessment results 

Prior to processing the fleet data for regime usage analysis, the data set was filtered further to 
ensure the legitimacy of the results. All aircraft that had no customer-logged hours prior to 2013 
were removed to ensure that any infant stage flight activity, such as production acceptance 
flights, initial customer checkout, and/or customer training flights were not included in the 2013 
usage analysis. This filtering step removed 43 aircraft from the usage survey population. In 
addition, very low utilization aircraft, which flew less than 100 hours in 2013, were removed. 
This resulted in 33 additional aircraft being removed from the usage survey population. After 
completion of the data quality assessments and the tail number filtering steps described above, 
93,168 flight hours from 124 fleet aircraft remained in the fleet usage survey population. 

The regime usage analysis was then performed on this population of fleet data. RR results for the 
six stationary swashplate critical regimes are shown in table 15. Several important statistics for 
each regime can be observed in this table. The second column shows the number of aircraft that 
have flown the regime at least one time. The GAG regime will always occur in 100% of aircraft 
in the fleet because it is based on counting takeoff/landing cycles. However, some regimes do 
not occur even once in some aircraft usage histories. For example, only 44% of aircraft in the 
fleet have performed a 45° left turn at VNE airspeed (more specifically, at airspeed above 0.8 
VNE) in 2013. The CWC usage metric is shown along with aircraft usage statistics for 90th 
percentile, 50th percentile, mean, and max. Finally, a Pareto chart, which shows the shape of the 
fleet distribution from the maximum to minimum aircraft usage statistic, is presented in the last 
column. These statistics are only for the subpopulation of aircraft that have performed the 
maneuver at least one time.  
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Table 19. Critical regime fleet metrics—2013 results 

Regime 

# of A/C 
with 

Occurrences 

% of A/C 
with 

Occurrences 

Usage 
Metric 
Units CWC 

90th 
Percentile 

50th 
Percentile Mean Max 

Usage Pareto 
Distribution Shape 

Left turn, 
45° VNE 55 44% % time 0.15% 0.028% 0.002% 0.008% 0.049% 

Right turn, 
45° VNE 72 58% % time 0.15% 0.032% 0.002% 0.008% 0.076% 

Entry/recovery 
left turn 30° & 
45° VNE 

124 100% 
Occurrences 

per 100 
hours 

95 160.9 54.0 69.7 372.3 

Entry/recovery 
right turn 30° 
& 45° VNE 

124 100% 
Occurrences 

per 100 
hours 

95 194.8 56.3 78.0 299.0 

Moderate 
pullout, 
0.8 VNE 

68 55% 
Occurrences 

per 100 
hours 

90 0.7 0.2 0.5 6.0 

GAG 124 100% 
Occurrences 

per 100 
hours 

450 209.0 128.9 153.8 520.3 
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For both the left and right 45° VNE turn, the 90th percentile usage rate is roughly 20% of the 
CWC usage spectrum assumption, which indicates a significant opportunity for HUMS usage 
credit. The 90th percentile usage statistic for both left and right E&R turn regimes were found to 
exceed the current CWC usage spectrum, while the 50th and mean are below the usage spectrum. 
This highlights the fact that while there are many areas in the usage spectrum that are perceived 
to be ultra-conservative, there are cases where the CWC usage spectrum may fall short for a 
specific regime, which is counterbalanced by conservatism in other regimes and the definition of 
the regime. In this specific case, the E&R regimes are grouped for 30° and 45° turns for 
simplicity in the fatigue analysis. However, as indicated in figure 51, 99% of the grouped 
occurrences are actually attributed to 30° turns, with 1% attributed to 45° turns. The difference in 
30° and 45° turn occurrences is so large that this figure can only show the relative size in a log 
chart format. Because these two regimes are grouped together in the usage spectrum, the highest 
flight test fatigue load for the grouped maneuvers, which is derived from the higher AOB turn, is 
assigned to all those occurrences. This indicates that the usage spectrum is likely to be too 
conservative in grouping 30° and 45° turns together in a single line item even though a few 
aircraft exceed the CWC combined occurrence rate. This is another example of the opportunities 
that fleet data present in the optimal design of a fleet usage spectrum. A final note on turns is that 
right turns occur slightly more frequently than left turns in nearly every category; upon 
discussion with a test pilot, it was revealed that as a pilot typically sits in the right seat, turning 
right is preferred to turning left because of the increased visibility during the turn.  

Figure 51. Comparison of 30° and 45° turn E&R occurrence rate 
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Moderate pullouts at 0.8 VNE were found to occur significantly below the usage spectrum 
assumption of 90 occurrences per 100 hours. While this is the only pullout maneuver that is 
critical to the stationary swashplate fatigue analysis, the regime clustering capability gave insight 
into both moderate and severe pullouts. Severe pullouts are defined as a pullout exceeding 2 g of 
vertical acceleration. It was found that of the entire 2013 usage survey database, there were zero 
occurrences of a severe pullout. 

The 90th percentile fleet GAG rate was observed to be roughly 50% of the usage spectrum. 
However, five aircraft exceeded the usage spectrum rate by 6–15%. While the majority of the 
fleet would benefit significantly from a usage spectrum adjustment, it would not be prudent to 
reduce the usage spectrum as it would be insufficient for the worst-case aircraft. In this case, the 
fleet data strongly support implementing an individual aircraft UBM paradigm, which is the 
focus of the current mock credit application. 

The fleet results above indicate significant opportunity in adjusting the RT of the stationary 
swashplate both on a fleet-wide basis and for individual serial number components. In order to 
demonstrate the usage credit process for a single serial number component, a representative 
history of usage across the stationary swashplate’s 14,000-hour RT is necessary. This project did 
not address the necessary logistical challenge of identifying a specific serial number component 
and tracking the installation history over its life in order to accumulate the associated usage data 
relevant to the specific serial number credit. Rather, for the demonstration of UBM technology 
and the mock UBM credit process, it is sufficiently representative to select an aircraft with 
14,000 hours of usage history as a surrogate for the specific serial number swashplate usage 
history. Table 16 shows the relevant regime usage statistics for the five aircraft that have 
accumulated more than 14,000 flight hours over their lives. The highest time aircraft, identified 
as aircraft (A/C) #3, has accumulated 15,592 flight hours over its life. The usage statistics for 
this aircraft range from moderate to low relative to the five high-time aircraft. This aircraft was 
selected for a deeper dive usage analysis of 14,000 flight hours of fleet data and the specific 
mock credit documented herein. To build up a representative usage history, all usage data for 
A/C#3 were extracted from the HUMS database, filtered through the data quality assessment 
checks, and processed to extract the cumulative lifetime regime usage statistics relevant to the 
stationary swashplate credit. These results for A/C#3 are shown below in table 17. The lifetime 
results for A/C#3 are very similar to the 2013 results.  The results in table 17, which show all 
usage data since the individual aircraft were new, are used in the next section to demonstrate 
how to calculate serial number credit from HUMS regime usage data. 
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Table 20. High-time aircraft usage statistics for 2013 

A/C # 

Total 
Flight 
Hours 

2013 
Flight 
Hours 

GAG 
Rate 
(Occ  

/100 hr) 

Left 
Turn, 

45° VNE 
(% Time) 

Right 
Turn, 

45° VNE 
(% 

Time) 

E&R Left 
Turn 30° & 

45° VNE 
(Occ / 
100 hr) 

E&R Right 
Turn 30° & 

45° VNE 
(Occ / 
100 hr) 

Moderate 
Pullout, 
0.8 VNE 
(Occ / 
100 hr) 

A/C #1 14,413 1,422 135.5 — 0.0015% 55.7 49.2 0.1 
A/C #2 14,612 1,419 133.4 0.0022% 0.0016% 57.5 50.3 0.1 
A/C #3 15,592 1,841 93.9 — — 28.0 49.0 — 
A/C #4 15,526 2,170 85.7 — 0.0020% 27.0 34.9 — 
A/C #5 14,376 1,811 92.0 0.0008% 0.0004% 29.4 42.3 — 

Table 21. A/C#3 usage statistics for all times 

Regime CWC Usage Actual Usage Units 
Left turn 45° VNE 0.1500% 0.0022% % time 
Right turn 45° VNE 0.1500% 0.0032% % time 
Entry/recovery left turn 
30° & 45° VNE 95 38 Occurrence / 100 hr 

Entry/recovery right turn 
30° & 45° VNE 95 58 Occurrence / 100 hr 

Moderate pullout 
0.8 VNE 90 0.05 Occurrence / 100 hr 

GAG 450 114 Occurrence / 100 hr 

Total validated HUMS flight hours1 = 14,226 
Total operator logged flight hours1 = 15,592 

     1 = through September 2014 

3.5.2.5  HUMS FATIGUE MODEL 

The mock UBM credit intervention action is to adjust the cumulative flight hours of a specific 
serial number component based on the calculation of accumulated fatigue damage using the 
HUMS RR data in conjunction with the fatigue failure model of the component. When the 
desired output from the fatigue model is a percent life or cumulative fatigue damage rather than 
an RT, the fatigue model must be reformed to an equivalent HUMS compatible fatigue model 
that enables calculation of damage per unit of HUMS data, either occurrences or duration, as 
dictated by the type of regime. Additionally, as some amount of damage is still attributed to non-
critical, non-monitored regimes, this damage must be added back in on a flight-hour basis. This 
requires a set of HUMS damage rates that are converted from the CWC damage rates. The result 
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of this conversion is shown in table 18. In this table, the CWC damage rates for the steady state 
turn regimes is translated into damage per second, while the CWC damage rate for the transient 
and GAG regimes are translated into damage per occurrence. The residual damage attributed to 
non-monitored regimes is translated from damage per 100 hours to damage per hour. Using these 
damage rate factors, the damage can then be computed directly from a HUMS flight using the 
equation shown below. Note that this equation does not bring in the reliability factors discussed 
in the next section. 

Table 22. CWC damage rates compared with HUMS damage rates 

Regime 

CWC 
Usage / 
100 hr 

CWC 
Damage / 

100 hr HUMS Damage Accrual Basis 

HUMS 
Damage per 

Unit 
Left turn 45° VNE 0.15% 0.0023 Damage per regime second 4.20E-06 
Right turn 45° VNE 0.15% 0.0023 Damage per regime second 4.20E-06 

Entry/recovery left turn 
30° & 45° VNE 95 0.0007 Damage per regime occurrence 7.82E-06 

Entry/recovery right turn 
30° & 45° VNE 95 0.0006 Damage per regime occurrence 6.65E-06 

Symmetric Pullout, 
Moderate, 0.8 VNE 90 0.0007 Damage per regime occurrence 7.36E-06 

GAG 450 0.0006 Damage per regime occurrence 1.27E-06 

Residual damage 
(Non-critical regimes) N/A 0.0001 Damage per flight hour 1.48E-06 

A = Left turn, 45° VNE usage in seconds 
B = Right turn, 45° VNE usage in seconds 
C = E&R left turn 30° & 45° VNE usage in occurrences 
D = E&R right turn 30° & 45° VNE usage in occurrences 
E = Symmetric pullout, moderate, 0.8 VNE usage in occurrences 
F = GAG usage in occurrences 
G = Flight hours  

Damage = A(4.2E-60) + B(4.2E-6) + C(7.82E-6) + D(6.65E-6) + 
E(7.36E-6) + F(1.27E-6) + G(1.48E-6) 

In the equation above, the damage attributed to non-critical regimes is termed the residual 
damage rate and is accumulated on a flight-hour basis (i.e., G). An alternate approach to dealing 
with non-monitored regimes would be to subtract all the usage time incurred by the monitored 
regimes from the total flight hours before applying the CWC damage rate. The additional benefit 
to that approach in this application is negligible due to the extremely small amount of time 
incurred by the monitored regimes. However, it is possible that a high-occurrence non-damaging 
regime, such as LF, may be validated and monitored in a way to reduce the amount of time 
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allocated to any non-monitored damaging regimes. This concept can be understood by looking at 
figure 52. In this example, Regimes 1, 2, and 3 are monitored while Regimes 4 and 5 are not. 
Regime 4 is a damaging regime that normally would be assumed to occur using the CWC usage 
rate assumption. On the other hand, Regime 3 is a non-damaging monitored regime that is 
known to occur much more frequently than was assumed in the CWC usage spectrum. By 
accounting for the monitored time of non-damaging regimes, it is possible to reduce the amount 
of time that is allocated to the remaining unmonitored regimes to a damage rate less than what 
was assumed in the original CWC usage spectrum. Using this approach, it may be possible to 
achieve a UBM benefit for damaging regimes that are not explicitly monitored as long as benign 
regimes (e.g., LF and hover) can be shown to occur much more frequently than assumed in the 
CWC.  

Figure 52. HUMS monitored and unmonitored usage accrual 

3.5.2.6  Reliability Factors 

As discussed in section 2.3, the calculation of component damage from HUMS recorded usage is 
not as simple as plugging in recorded usage rate data into a traditional fatigue life model. A 
methodology must be used to ensure six-9’s reliability is maintained. A simple method was 
developed in a paper by Adams and Zhao [13] for applying what is called the UMRF to actual 
usage statistics when calculating usage credits from monitoring one regime. The UMRF is a 
method to increase the usage data by a factor that adds sufficient margin back into the life model 
when the life model is applied to an individual aircraft’s measured usage data. This methodology 
was approved for the FAA-certified S-92 rotorcraft MR hub credit project, which was the first 
real application of HUMS usage data to adjust the RT of a rotorcraft component. The reliability 
approach established for the current mock credit application is twofold. First, the UMRF method 
will be expanded from the initial MR hub credit application, which was based on one damaging 
regime, to a more complex case of multiple damaging regimes. Using a different UMRF for each 
of the six stationary swashplate damaging regimes will allow rapid credit calculation and damage 
trending over the life of the component. Second, the probabilistic approach described in section 
2.3 will be applied independent of the UMRF as a means to validate the expansion of the UMRF 
to multiple regimes. This will be documented in the subsequent validation methodology section. 
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The UMRF is defined as the ratio of the 90th to the 50th usage metric from the fleet for the 
specific regime under evaluation. These statistics were already presented in table 15 for the 
stationary swashplate critical regimes. The UMRF methodology essentially determines the 
median usage margin against a hypothetical 90th percentile CWC usage spectrum based on the 
fleet data. By determining the median usage margin that would exist in a CWC usage spectrum 
based on the fleet data, the same margin can then be applied with confidence to any individual 
aircraft’s usage data. The primary benefit of this approach is that it is simple and provides 
sufficient conservatism to maintain comparable reliability to that sought in the original design 
and lifing calculation. There are several problems that may occur in the application of the UMRF 
methodology, which will be discussed throughout this section.  

The first step in applying the UMRF is to calculate the factors themselves. This is easily done by 
dividing the 90th percent statistic by the 50th percent statistic using the fleet statistic results from 
table 15. The resulting UMRFs are presented below in table 19. The reliability factor of 1.6 for 
GAG is very similar to the value of 1.5 that was calculated for rotor cycle GAG in Adams and 
Zhao’s paper [13]. Note that the GAG in this application refers to the takeoff/landing cycle. 
However, the reliability factors for the in-flight maneuvers are significantly higher. Left and 
right turn, 45° VNE maneuver statistics resulted in a reliability factor of 13.7 and 16, respectively. 
To understand why the UMRF values are so exceedingly high for these maneuvers, the 
maneuver Pareto distribution is shown in figure 53. Because the UMRF is the ratio of the 90th to 
50th percentile, the UMRF will increase as the 90th and 50th percentile values get further apart. 
This can be thought of as increased variation in the maneuver rate across the fleet. As variation 
increases, a 90th percentile-based usage spectrum will tend to provide greater margin against the 
fleet median usage. Because the goal of the UMRF methodology is to conserve this usage 
spectrum margin, the methodology results in higher factors with higher usage variation. This is 
somewhat of a paradox, as the objective of usage monitoring is to reduce or eliminate the effect 
of usage variation in the fatigue management process. 

Table 23. Usage monitor reliability factors 

Regime 
Usage Metric 

Units 
90th 

Percentile 
50th 

Percentile UMRF 
Left turn, 45° VNE % time 0.028% 0.002% 13.7 
Right turn, 45° VNE % time 0.032% 0.002% 16 
Entry/recovery left 
turn 30° & 45° VNE 

Occurrences per 
100 hours 160.9 54.0 2.98 

Entry/recovery right 
turn 30° & 45° VNE 

Occurrences per 
100 hours 194.8 56.3 3.46 

Moderate pullout, 
0.8 VNE 

Occurrences per 
100 hours 0.7 0.2 4.48 

GAG Occurrences per 
100 hours 209.0 128.9 1.62 
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Figure 53. Left turn, 45° VNE usage Pareto 

Digging deeper into the statistics for the left turn, 45° VNE maneuver, it was found that this 
maneuver had the fewest number of aircraft with usage data from the list in table 15. To calculate 
those statistics, aircraft with non-zero usage rate values were treated as a subpopulation from 
aircraft with usage rates of zero (because the maneuver was never flown in the 2013 data set) to 
avoid skewing statistics away from the critical population of aircraft that have performed 
maneuvers. The high-time A/C#3 from table 16 was an aircraft with no usage data for the left 
turn, 45° VNE maneuver. However, when processing A/C#3 data since inception, some 
occurrences of the left turn, 45° VNE maneuver were found, and the resulting usage rate was in 
line with the fleet’s 50th percentile usage from the 2013 analysis. This indicates that for a 
maneuver that very rarely occurs, much more data are required to really understand the fleet 
usage statistics. It is very possible that the high UMRF values for the left and right turn, 45° VNE
maneuver are simply due to not having enough data when arbitrarily restricting the population to 
one calendar year, as was done herein for fleet analysis.  

To alleviate this problem, an approach was taken to group together similar regimes into a single 
regime for the purposes of calculating the UMRF. This grouping allows more maneuver data to 
be considered in the UMRF calculation and generalizes the UMRF for similar regimes, such that 
the same factor can be applied to both. This grouping was performed for the left and right, 45° 
VNE maneuver by combining the 30° and 45° turns and by combining the left and right turns. 
Further condensing was performed for the E&R turn regimes by grouping left and right turns 
together; for the moderate pullout regime, grouping the 0.8 VNE and VNE airspeed categories 
together was undertaken. The final UMRF factors, after consolidation of these regimes, are 
shown in table 20. These reliability factors can be applied directly to HUMS usage data prior to 
application of the damage equation developed in section 3.5.2.5. 
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Table 24. Final UMRF factors after regime consolidation 

Regime 

# of A/C 
with 

Occurrence 

% of A/C 
with 

Occurrence 

Usage 
Metric 
Units 

90th 
Percentile 

50th 
Percentile UMRF 

Left turn, 45° VNE 

124 100% % time 1.446% 0.493% 2.93 
Right turn, 45° VNE 
Left turn, 30° VNE 
Right turn, 30° VNE 
Entry/recovery left 
turn 30° & 45° VNE 

124 100% 
Occurrences 

per 100 
hours 

379.8 113.0 3.36 
Entry/recovery right 
turn 30° & 45° VNE 
Moderate pullout, 
0.8 VNE 

101 81% 
Occurrences 

per 100 
hours 

1.25 0.44 2.85 
Moderate pullout, 
VNE 

GAG 124 100% 
Occurrences 

per 100 
hours 

209.0 128.9 1.62 

3.5.2.7  HUMS Damage and UBM Credit Calculation 

With an established regime monitoring approach, a HUMS-compatible damage model, and a set 
of reliability factors, it is now possible to take the usage data since inception for A/C#3 and turn 
these data into a damage accumulation trend. Using only the first 14,000 flight hours of usage 
data, the damage trend was calculated for the HUMS-based damage with and without the UMRF 
factors from table 20, along with the traditional CWC linear damage rate. The results were 
plotted in figure 54, and the damage metrics per regime are shown in table 21. From these data, 
A/C#3 has accumulated 41.5% damage when factoring in the UMRFs. By comparing the total 
regime damage from the raw HUMS data with that from the UMRF methodology (after 
removing the residual damage), the average effective reliability factor was 3.1. A future RT from 
the damage data indicates that the UMRF-based RT would be 33,700 hours, or 2.4 times the 
CRT. These data indicate that the stationary swashplate installed on this aircraft—assuming it 
was installed for the entire 14,000 flight hours—has significant opportunity for a usage-based RT 
credit.  
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Figure 54. HUMS-based damage trend for A/C#3 
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Table 25. Damage summary for A/C#3 at 14,000 flight hours 

Damage Summary 
Damage Summary 

(% of Total) 

Raw 
HUMS 

HUMS 
x 

UMRF 
Assumed 

CWC 
Raw 

HUMS 
HUMS 

x UMRF 
Assumed 

CWC 
Left turn 45° VNE 0.0046 0.0136 0.3111 3% 3% 31% 
Right turn 45° VNE 0.0068 0.0199 0.3111 5% 5% 31% 
Entry/recovery left turn 
30° & 45° VNE 0.0420 0.1413 0.1017 28% 34% 10% 

Entry/recovery right 
turn 30° & 45° VNE 0.0551 0.1853 0.0865 37% 45% 9% 

Symmetric Pullout, 
Moderate, 0.8 VNE 0.0001 0.0002 0.0908 0% 0% 9% 

GAG counts 0.0207 0.0335 0.0784 14% 8% 8% 
Residual damage 0.0211 0.0211 0.0203 14% 5% 2% 
Total 0.1505 0.4150 1.0000 100% 100% 100% 
Expected retirement 
time (hrs) 93,000 33,700 14,000 

While figure 54 shows the damage trend for the first 14,000 flight hours, this was based only on 
the validated HUMS flight hours. In reality, the operator-logged flight hours achieved 14,000 
flight hours sooner than this point after accounting for the removal of some HUMS data for 
validation filtering and a tendency for pilots to round-up or over-report flight hours. At the time 
the operator-logged 14,000 flight hours, the validated HUMS flight hours for A/C#3 totaled 
12,577 hours, or roughly 90% of the operator-logged flight hours. It is likely that a majority of 
the 10% is a result of pilot over-reporting—essentially meaning the over-reported flight hours do 
not exist. While there are methods to determine how much of the 10% is due to invalid or 
missing data, as opposed to pilot over-reporting, the simple approach taken in this mock 
application is to assume that the entire 10% of flight hours are real and not captured or validated 
by the UBM credit process. The most conservative approach is to apply the baseline CWC 
damage rate to this 10% of flight hours. Other approaches may also be considered, such as 
adjusting the CWC damage rate based on fleet results. However, for the sake of simplicity, the 
10% of flight hours are covered using the baseline CWC damage rate for this mock credit. At 
this point, the UBM credit can be calculated. The calculation steps are shown in figure 55. The 
final flight hour credit for A/C#3 is 6,765 hours, which is a credit of 48% of the original CRT.  
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Figure 55. A/C#3 HUMS credit calculation 

3.5.3  Validation Methodology 

3.5.3.1  Regime Recognition Clustering 

An approach to RR validation was developed under Beale and Davis’ [2] effort and applied here 
in the validation of the S-92 RR clustering/prorating methodology. The approach requires the 
availability of flight load survey test data, which normally contain all of the relevant usage 
spectrum regimes. From the flight test data, a set of run logs are developed that identify precise 
start/stop times of each flight test maneuver, along with a maneuver code that is used to map 
directly to the S-92 aircraft usage spectrum.  
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In order for RR to track the steady state and transient maneuvers in a way that is consistent with 
the fatigue analysis, it must be validated to track duration and/or occurrences, depending on the 
type of regime. Transient regimes are quantified in terms of occurrences, and steady state 
regimes are quantified in terms of duration. Transient regimes are not typically measured in 
terms of duration, nor can the flight test run markers be used to validate the duration of a 
transient regime. This is illustrated in figure 56, which shows how a transient maneuver is 
typically captured by the flight test run logs. Here, a 45° left climbing turn maneuver is flown, 
but the capture window includes steady state climbing data at the beginning and end. This makes 
the transient maneuver duration statistics difficult to attain because the true start and stop time of 
the maneuver cannot be achieved without laboriously going through hundreds of maneuvers and 
assigning them manually. For the unique case of turns, however, RR must accurately track both 
duration and occurrences. This is because the fatigue usage spectrum separates out the turn E&R 
as distinct transient events while treating the rest of the turn as a steady state event. In these 
cases, the total duration of the turn event is based on the flight test run log time after removing 
the non-turn related HUMS-steady state regimes that immediately precede and follow the 
transient turn regime.  

Figure 56. Example of run log markers for transient maneuver 

The validation of the critical regimes used for the current mock UBM credit was performed with 
an existing set of S-92 aircraft flight test data, using 15 test flights conducted between January 
2009 and September 2011 on two different test aircraft. For these flights, the Goodrich HUMS 
system was installed and configured with production representative software. These are the best 
known data sets SAC has to validate S-92 aircraft RR using flight test-declared truth regimes 
during a flight load survey. The regime validation metrics described above were applied to the 
entire flight test data set before clustering was applied and again after clustering was applied for 
the turn and pullout regimes.  
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The results of this validation effort are shown in table 22. The baseline RR algorithms are shown 
to have been consistently over-counting the occurrences for all turn regimes and not counting 
enough occurrences for the pullout and pushover regimes. For the generic 30° and 45° left and 
right turns, the baseline RR algorithms consistently undercounted duration, which is consistent 
with over-counting occurrences. On the other hand, the results of the clustering/prorating process 
were shown to dramatically improve both the counts and duration for all regimes. Accuracy of 
96% or better was achieved on all metrics.  

One exception is noted where low-g pullouts (less than 1.4 g) were not classified at all by RR 
and, therefore, could not be improved by clustering. This was initially a concern as the pullout 
regime is critical to the stationary swashplate, which was the focus of this mock credit. However, 
upon review of the fatigue loads generated for the low-g pullouts relative to the fatigue 
endurance limit for the stationary swashplate, it was found that the low-g pullouts are non-
damaging events that are not critical to the HUMS usage-based fatigue analysis. Figure 57 shows 
how the maximum fatigue load generated from hundreds of pullout maneuvers compares to the 
peak g level recorded during the maneuver. Both the HUMS detection threshold and stationary 
swashplate fatigue damage threshold are shown for reference. These two thresholds create four 
quadrants in the plot. What is important to note here is that all of the damaging pullout events 
fall within the detectable range. The quadrant on the upper left is for conditions that were 
damaging but not detected by HUMS, which did not occur in the flight test. This indicates that 
the HUMS detection threshold of 1.4 g is adequate for the current mock credit application. 
Future analysis of this threshold may be required for future UBM applications of the pullout 
regime that involve different fatigue loads or components with a lower damaging threshold than 
was considered here. 
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Table 26. Regime recognition validation results 

Truth Data Baseline RR Software After Clustering/Prorating 

Event 
Counts 

Event 
Duration 

Event 
Counts 

Event 
Duration 

% 
Event 
Counts 

% Event 
Duration 

Event 
Counts 

Event 
Duration 

% 
Event 
Counts 

% Event 
Duration 

Left turn 30 29 614.6 41 396.9 141% 65% 28 597.6 97% 97% 
Right turn 30 29 626.2 35 365.3 121% 58% 28 614.2 97% 98% 
Left turn 45 27 660.0 44 301.6 163% 46% 26 640.0 96% 97% 
Right turn 45 27 649.5 39 237.0 144% 36% 27 671.2 100% 103% 
Climb left turn 30 2 42.0 10 42.0 500% 100% 2 42.0 100% 100% 
Climb right turn 30 2 61.8 7 61.8 350% 100% 2 61.8 100% 100% 
PPD left turn 30 8 107.8 22 107.8 275% 100% 8 107.8 100% 100% 
PPD right turn 30 8 110.9 20 110.9 250% 100% 8 110.9 100% 100% 
Auto left turn 30 10 105.3 28 102.2 280% 97% 10 105.3 100% 100% 
Auto right turn 30 8 77.8 20 75.5 250% 97% 8 77.5 100% 100% 
Pullout > 1.4 g 85 N/A 46 N/A 54% N/A 84 N/A 99% N/A 
Pullout < 1.4 g 15 N/A 0 N/A 0% N/A 0 N/A 0% N/A 
Pushover 39 N/A 4 N/A 10% N/A 39 N/A 100% N/A 

CWC name: Composite worst case regime name 
Event counts: Total number of occurrences in flight test data or detected by RR 
Event time: Total time spent in regime in flight test data or detected by RR 

< 80% 80% ‒ 
95% 

95% ‒ 
105% > 120% 



Figure 57. Detection and damage threshold for pullouts 

3.5.3.2  HUMS Fatigue Model 

The HUMS fatigue model can be validated simply by entering inputs that are derived from the 
CWC usage spectrum and then checking for a damage accumulation of 14,000 hours. The 
equation developed in 3.5.2.5 is repeated below for reference. 

A = Left turn, 45° VNE usage in seconds 
B = Right turn, 45° VNE usage in seconds 
C = E&R left turn 30° & 45° VNE usage in occurrences 
D = E&R right turn 30° & 45° VNE usage in occurrences 
E = Symmetric pullout, moderate, 0.8 VNE usage in occurrences 
F = GAG usage in occurrences 
G = Flight hours  

Damage = A(4.2E-60) + B(4.2E-6) + C(7.82E-6) + D(6.65E-6) + 
E(7.36E-6) + F(1.27E-6) + G(1.48E-6) 

To validate this model with the CWC usage metrics, values A–F from the equation above, need 
to be derived from the usage spectrum rates for a 14,000-hour lifetime. With that given set of 
inputs, the expected damage result from the equation is 1.0. 
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To determine the values of A and B for the left and right turn, 45° VNE that are consistent with 
the CWC usage, the percentage time metrics from table 12 are multiplied by 14,000 hours and 
then by 3,600 seconds/hour. To determine the values of C, D, E, and F, the maneuvers per 100 
hours metrics from table 12 are multiplied by 14,000 hours and then divided by 100. The test 
case input values for A–G are listed below in table 23. These test case inputs, when entered into 
the HUMS damage model, result in a cumulative damage value of 1.02. A damage value of 1 is 
achieved at 13,700 hours. This value is as expected because the 14,000-hour RT is actually 
rounded up to 14,000 hours from the true calculated lifetime of 13,700 hours in order to achieve 
a standard of only two significant digits. 

Table 27. HUMS damage model test case inputs 

HUMS 
Usage 

Parameter 
CWC Test 

Value Units 
A 75,600 seconds 
B 75,600 seconds 
C 13,300 occurrences 
D 13,300 occurrences 
E 12,600 occurrences 
F 63,000 occurrences 
G 14,000 hours 

3.5.3.3  Reliability Methodology 

The reliability factors used in the example mock credit were developed using the UMRF 
methodology [13]. To validate the application of the UMRF for this multiple regime usage credit 
example, the reliability of the example stationary swashplate serial number is modeled using the 
probabilistic reliability framework described in section 2.3. 

The fatigue reliability of the stationary swashplate was modeled from two perspectives. The first 
perspective is an a priori view of the fatigue problem where the strength, loads, and usage of the 
stationary swashplate are known in terms of fleet population statistics, but are unknown for a 
specific serial number component in service. This perspective, which is consistent with the 
traditional fatigue methodology, is termed the “fleet average reliability” because it only 
considers knowledge at the fleet level rather than at the individual aircraft level. The resulting 
reliability at a given RT is the expected reliability of any individual aircraft with unknown usage, 
loads, and strength. By modeling the fatigue reliability in this way, a baseline fleet reliability can 
be established by intersecting the current 14,000-hour RT against the resulting reliability curve. 
The result of this analysis is shown in figure 58. Using this reliability framework, the resulting 
fleet average reliability at the 14,000-hour stationary swashplate RT is 0.999998, or 5.8-9s. This 
result lines up well with the expected reliability of approximately six- 9s, which is the intent of 
the traditional fatigue life process. This serves to validate both the probabilistic fatigue model of 
the stationary swashplate and the traditional fatigue substantiation process. It is not expected that 
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every application will agree as well as shown here, as previous applications of this type of 
reliability analysis have shown that agreement within ±1-9 of reliability is a reasonable range of 
expected agreement, as noted in Thompson and Adams’ paper [3]. This range of acceptability is 
shown in figure 58 by the green-shaded area. The goal of the mock UBM credit is to achieve a 
reliability that is comparable with the baseline reliability achieved without monitoring. 

Figure 58. Fleet average reliability for stationary swashplate 

The second perspective is an a posteriori view of the fatigue problem after considering the 
additional knowledge gained from a usage or load monitor. In this perspective, the strength and 
loads remain unknown as they did in the fleet average reliability model; however, the usage is 
now considered a known value. Termed herein as the serial number reliability, this perspective 
can be thought of as a Bayesian update to the original a priori view, as it considers the measured 
usage data for a specific component serial number rather than treating usage as unknown. This 
perspective adds additional information to the fatigue reliability problem, which reduces the 
uncertainty that existed in the a priori model. This perspective is consistent with the HUMS 
usage-based damage model, where the usage is no longer treated as an unknown. The serial 
number reliability analysis is performed by using the results from A/C#3 that are shown in table 
17. The resulting serial number reliability curve, shown in figure 59, is presented relative to the
original fleet average reliability curve. Two serial number reliability curves are shown in this 
figure. They indicate the expected RT based on the raw HUMS usage counts and HUMS usage 
counts with the UMRF reliability factors applied. These values are derived from table 21. By 
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comparing these values to the serial number reliability, it is possible to determine the reliability 
that was achieved with raw HUMS data and HUMS plus reliability factors.  

Using the raw HUMS data projected, an RT of 93,000 flight hours was calculated, resulting in an 
estimated reliability of 0.99994, or 4.4-9s. This is consistent with the expectation that the use of 
raw usage data with no margin in fatigue damage analysis does not provide sufficient reliability. 
When using HUMS usage data with applied reliability factors, an RT of 34,000 hours is 
calculated, resulting in an estimated reliability of 0.999997, or 5.7-9s of reliability—which is 
well within the acceptable range of reliability and considered to be comparable with the baseline 
reliability of 5.8-9s. The UMRF methodology had the effect of adding back 1.3-9s of reliability. 
It is anticipated that future HUMS-based UBM serial number credits will have the requirement 
of demonstrating that the methodology results in reliability are comparable with baseline 
reliability but would not require a reliability assessment of each serial number. The analysis 
provided here serves to validate the methodology of applying reliability factors for recurring 
application of the mock credit to other serial numbers. 

Figure 59. A/C#3 serial number reliability for stationary swashplate 

This type of reliability analysis enables calculation of a HUMS reliability factor using an 
alternate methodology that does not rely on fleet data. As noted previously, the UMRF 
methodology provided an effective reliability factor of 3.1. Following the reliability analysis 
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presented here, it is possible to define a reliability factor that achieves the same goal of adjusting 
the raw HUMS CRT projection to provide the desired reliability. The serial number reliability 
curve in figure 59 intersects the baseline reliability target at 28,000 hours. Using this intersection 
point, the raw HUMS damage can be multiplied by a factor of (93,000/28,000) = 3.3. This 
methodology provides a reliability factor very similar in magnitude to the UMRF factors shown 
in table 20. It is interesting that the values are very similar because they rely on completely 
independent sources of data. The methodology provided here may be a more practical 
methodology, where monitoring the entire fleet in advance of a credit is not feasible or does not 
provide sufficient data to develop the UMRF factors.  

4. GENERAL APPLICABILITY TO OTHER CREDIT TYPES

The HUMS-based UBM credit process presented in section 3 is demonstrated in the context of a 
specific serial number component credit, although the process can be applied to any rotorcraft 
component and may be easily extended to other UBM credit approaches. For example, a part 
number RT adjustment is a similar credit approach, where rather than adjusting the RT of an 
individual serial number component, the RT is adjusted one time for the entire fleet. In this case, 
the fleet monitoring technology would be applied to the entire fleet rather than one specific tail 
number rotorcraft. The part number credit approach is achieved through an update to the CWC 
rather than through UMRF-based adjustments for individual serial numbers, but the probabilistic 
method used to validate the resulting RT can still be applied for the part number approach. 

With the application of more advanced usage monitoring approaches such as GW/CG or load 
estimation, fleet usage data can be further processed to provide more meaningful results that 
better indicate the severity of loads encountered during specific flight maneuvers. Leveraging 
these tools in the credit process requires a deeper understanding of the physics involved in the 
fatigue problem (e.g., maneuver load sensitivity to GW) such that the technology can be 
successfully applied in the context of a specific application, and requires more sophisticated 
validation analysis using independent flight test data.  

It is envisioned that the details of any of the above UBM credits would have to be clearly 
documented in a similar manner, as laid out in section 3. A more generally applicable outline is 
presented below. 

1. Description of application and associated credit

2. Physics of the application

a. Component failure modes
b. HUMS monitoring technique
c. Data quality assurance
d. Reliability methodology
e. Credit calculation

3. Validation methodology

a. HUMS monitoring technique
b. Reliability methodology
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5. CONCLUSIONS AND RECOMMENDATIONS

This report documents the technical work conducted under Delivery Order (DO) 0002/0003 
within indefinite delivery/indefinite quantity contract DTFACT-11-D-00004, which leveraged 
previous research and development (R&D) conducted by Sikorsky Aircraft Corporation (SAC) 
to develop and demonstrate the application of enabling usage and loads monitoring technologies 
(e.g., regime, gross weight [GW], center of gravity [CG], and loads) to fleet data to achieve 
benefits from usage-based fatigue life management or usage-based maintenance (UBM) 
processes. In particular, DO-0002/0003 continued to refine, validate, and apply regime 
clustering—reaching a maturity level that is considered sufficient to achieve certain important 
types of near-term HUMS-based UBM credits for components for which regimes such as turns, 
pushovers, and pullouts are critical drivers of RTs associated with life-limiting failure modes.  

Data were also analyzed from a flight test conducted on a UH-60M aircraft, by the U.S. Army’s 
Communications-Electronics Research, Development and Engineering Center, of fiber-optic 
landing gear load sensors that can be used to calculate GW/CG and measure landing loads. The 
prototype landing gear load sensors showed promise, with those installed in the TLG actually 
performing better than traditional foil-gage reference sensors used on the tail wheel strut as 
determined through comparison to truth data acquired from careful scale-measurements of 
aircraft weight and balance during aircraft flight tests.  

On the other hand, prototype sensors integrated into the MLGs encountered significant 
measurement performance issues associated with the method of integration within the axle that 
will require a redesign of the integrated sensor package before it can be further matured, 
validated, and demonstrated to reach Technology Readiness Level 7 so that it can be prototyped 
in an operational environment. Through the use of a combination of traditional MLG strut 
sensors and the prototype fiber-optic TLG sensor, the viability of monitoring GW and CG was 
demonstrated. Flight test data were used to determine the effect on accuracy of taking landing 
gear measurements prior to takeoff during different ground operational conditions, including 
rotor stopped, rotor turning at idle, and rotor turning a 100% revolutions per minute and flat 
pitch. The insight gained will be valuable for defining viable data capture windows that 
maximize the data acquisition opportunities while minimizing errors in calculated GW and CG 
within the constraints of normal aircraft startup procedures.  

Finally, an investigation of load monitoring requirements was conducted via simulation-based 
sensitivity studies to develop minimum requirements recommended for key load measurement 
attributes in support of future AC 29-2C MG-15 guidance on the integration of load monitoring 
technologies into HUMS. 

The primary focus of DO-0002/0003, and therefore this report, was on the application of 
structural usage monitoring methods to achieve a “mock UBM credit.” Building on previous 
R&D efforts, selected usage monitoring methods and a viable end-to-end process for achieving 
UBM credits were applied to calculate flight-hour credits and, by extension, RT credits, for a 
representative life-limited component using individual aircraft regime statistics. A 
comprehensive assessment of the life-limited components contained in an S-92 rotorcraft was 
conducted to identify high-value candidate components for use in developing a mock credit. A 
total of 10 candidate components were identified that had various advantages and disadvantages 
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relative to the objectives of the FAA program. The main rotor stationary swashplate was selected 
based on this assessment because it was a moderately complex, but tractable, application that 
could be completed within the allocated budget and schedule of the FAA program. The 
stationary swashplate required accurate recognition of six critical regimes—including turns, push 
overs, and pullouts of different severity levels—in order to achieve a UBM credit. 

The previously developed regime clustering method was applied in automated fashion to 
archived S-92 aircraft operational HUMS data, resulting in individual aircraft usage statistics 
across the fleet for critical regimes driving the RT for the stationary swashplate. Usage statistics 
for all S-92 aircraft were calculated for one year’s worth of data and compared to the composite 
worst-case (CWC) usage spectrum, by individual tail number, in order to identify the best 
candidate serial numbers for UBM credits. The entire usage history of the selected serial number 
was analyzed to calculate a usage credit and new RT using regime-specific reliability factors to 
achieve approximately six-9’s (0.999999) fatigue reliability, as validated within a probabilistic 
reliability framework.  

The results were documented in a structure that paralleled AC 29-2C MG-15 guidelines for 
HUMS-based usage credits. The specific UBM credit was described, and the physics of failure of 
the target component were analyzed, to determine the critical regimes that required accurate 
monitoring versus those that could be managed through continued application of existing CWC 
fatigue damage rates. The end-to-end UBM credit process was described, starting with the 
acquisition of onboard sensor data and proceeding to the calculation of a usage-based flight-hour 
adjustment at SAC. In compliance with AC 29-2C MG-15, a hazard and criticality analysis of 
the failure modes of the end-to-end credit process was conducted to demonstrate that process 
risks were adequately addressed with mitigating actions commensurate with the use of existing 
S-92 aircraft HUMS software and existing SAC fatigue analysis and approval processes. The 
end-to-end process was applied to calculate the usage statistics from archived HUMS data for the 
selected serial number—demonstrating its ability to identify missing or invalid data, which 
totaled about 3% of the total data history, and address it through the use of CWC assumptions. 

The existing fatigue life model for the S-92 aircraft was transformed to accept actual usage 
inputs in the form of number of occurrences for monitored transient regimes and flight time for 
monitored steady regimes, along with assumed CWC-based aircraft usage for unmonitored 
regimes. Trends in accumulated fatigue damage were plotted with and without reliability factors, 
which were employed to ensure baseline reliability was maintained. Flight-hour credits of 
approximately 60% and 85% were calculated with and without reliability factors, respectively. If 
historical usage patterns were maintained, it was projected that the RT of the specific serial 
number component could be safely increased by a factor of 2.4 when compared with a projected 
increase of more than 6.6 times the 14,000-hour published RT without the application of 
reliability factors.  

The mock credit was confirmed by the validation of regime clustering and the resultant reliability 
of the projected RT increase. Existing flight test data were used to demonstrate that all of the 
critical monitored regimes could be identified to 96% or greater accuracy in terms of number of 
occurrences and/or time duration, as appropriate for transient and steady regimes.  
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Finally, the probabilistic reliability assessment framework was used to validate the use of regime 
reliability factors to achieve acceptable reliability while exploiting the benefits of monitored 
usage. The probabilistic framework was first validated by applying it to the original CWC usage 
and loads spectrum to calculate an RT of 14,000 flight hours and associated reliability of 5.8-9s. 
It was then applied to the mock usage credit to demonstrate that the use of regime reliability 
factors provided 5.7-9s of reliability, which was considered comparable with baseline reliability.  

As a result of this R&D effort, SAC has concluded that the regime clustering and UBM methods 
described herein are sufficiently mature to facilitate going forward with formal UBM credit 
applications. 
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